Properties

Label 6336.3475
Modulus $6336$
Conductor $704$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,7,0,8]))
 
Copy content pari:[g,chi] = znchar(Mod(3475,6336))
 

Basic properties

Modulus: \(6336\)
Conductor: \(704\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{704}(659,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6336.da

\(\chi_{6336}(307,\cdot)\) \(\chi_{6336}(1099,\cdot)\) \(\chi_{6336}(1891,\cdot)\) \(\chi_{6336}(2683,\cdot)\) \(\chi_{6336}(3475,\cdot)\) \(\chi_{6336}(4267,\cdot)\) \(\chi_{6336}(5059,\cdot)\) \(\chi_{6336}(5851,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.129571992952299880559984695574528.1

Values on generators

\((4159,4357,3521,1729)\) → \((-1,e\left(\frac{7}{16}\right),1,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 6336 }(3475, a) \) \(1\)\(1\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{16}\right)\)\(-i\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(1\)\(e\left(\frac{13}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6336 }(3475,a) \;\) at \(\;a = \) e.g. 2