Properties

Label 6336.1889
Modulus $6336$
Conductor $264$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([0,5,5,3]))
 
Copy content pari:[g,chi] = znchar(Mod(1889,6336))
 

Basic properties

Modulus: \(6336\)
Conductor: \(264\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{264}(173,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6336.ca

\(\chi_{6336}(161,\cdot)\) \(\chi_{6336}(1889,\cdot)\) \(\chi_{6336}(4193,\cdot)\) \(\chi_{6336}(4769,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.18775450875101184.1

Values on generators

\((4159,4357,3521,1729)\) → \((1,-1,-1,e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 6336 }(1889, a) \) \(1\)\(1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(-1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6336 }(1889,a) \;\) at \(\;a = \) e.g. 2