sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(632, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,39,4]))
pari:[g,chi] = znchar(Mod(397,632))
Modulus: | \(632\) | |
Conductor: | \(632\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{632}(5,\cdot)\)
\(\chi_{632}(13,\cdot)\)
\(\chi_{632}(45,\cdot)\)
\(\chi_{632}(189,\cdot)\)
\(\chi_{632}(253,\cdot)\)
\(\chi_{632}(269,\cdot)\)
\(\chi_{632}(277,\cdot)\)
\(\chi_{632}(309,\cdot)\)
\(\chi_{632}(325,\cdot)\)
\(\chi_{632}(341,\cdot)\)
\(\chi_{632}(365,\cdot)\)
\(\chi_{632}(389,\cdot)\)
\(\chi_{632}(397,\cdot)\)
\(\chi_{632}(421,\cdot)\)
\(\chi_{632}(437,\cdot)\)
\(\chi_{632}(445,\cdot)\)
\(\chi_{632}(485,\cdot)\)
\(\chi_{632}(493,\cdot)\)
\(\chi_{632}(525,\cdot)\)
\(\chi_{632}(557,\cdot)\)
\(\chi_{632}(573,\cdot)\)
\(\chi_{632}(589,\cdot)\)
\(\chi_{632}(597,\cdot)\)
\(\chi_{632}(629,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((159,317,161)\) → \((1,-1,e\left(\frac{2}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 632 }(397, a) \) |
\(1\) | \(1\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{7}{26}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)