sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(392))
M = H._module
chi = DirichletCharacter(H, M([196,245,240]))
pari:[g,chi] = znchar(Mod(811,6304))
| Modulus: | \(6304\) | |
| Conductor: | \(6304\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(392\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6304}(51,\cdot)\)
\(\chi_{6304}(59,\cdot)\)
\(\chi_{6304}(171,\cdot)\)
\(\chi_{6304}(187,\cdot)\)
\(\chi_{6304}(251,\cdot)\)
\(\chi_{6304}(267,\cdot)\)
\(\chi_{6304}(339,\cdot)\)
\(\chi_{6304}(347,\cdot)\)
\(\chi_{6304}(355,\cdot)\)
\(\chi_{6304}(379,\cdot)\)
\(\chi_{6304}(387,\cdot)\)
\(\chi_{6304}(443,\cdot)\)
\(\chi_{6304}(475,\cdot)\)
\(\chi_{6304}(499,\cdot)\)
\(\chi_{6304}(587,\cdot)\)
\(\chi_{6304}(619,\cdot)\)
\(\chi_{6304}(651,\cdot)\)
\(\chi_{6304}(667,\cdot)\)
\(\chi_{6304}(691,\cdot)\)
\(\chi_{6304}(723,\cdot)\)
\(\chi_{6304}(747,\cdot)\)
\(\chi_{6304}(763,\cdot)\)
\(\chi_{6304}(779,\cdot)\)
\(\chi_{6304}(811,\cdot)\)
\(\chi_{6304}(851,\cdot)\)
\(\chi_{6304}(923,\cdot)\)
\(\chi_{6304}(963,\cdot)\)
\(\chi_{6304}(1019,\cdot)\)
\(\chi_{6304}(1027,\cdot)\)
\(\chi_{6304}(1075,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((-1,e\left(\frac{5}{8}\right),e\left(\frac{30}{49}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(811, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{75}{392}\right)\) | \(e\left(\frac{45}{392}\right)\) | \(e\left(\frac{27}{196}\right)\) | \(e\left(\frac{75}{196}\right)\) | \(e\left(\frac{149}{392}\right)\) | \(e\left(\frac{267}{392}\right)\) | \(e\left(\frac{15}{49}\right)\) | \(e\left(\frac{83}{98}\right)\) | \(e\left(\frac{9}{56}\right)\) | \(e\left(\frac{129}{392}\right)\) |
sage:chi.jacobi_sum(n)