Properties

Label 6304.57
Modulus $6304$
Conductor $3152$
Order $196$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6304, base_ring=CyclotomicField(196)) M = H._module chi = DirichletCharacter(H, M([0,49,139]))
 
Copy content pari:[g,chi] = znchar(Mod(57,6304))
 

Basic properties

Modulus: \(6304\)
Conductor: \(3152\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(196\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3152}(2421,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6304.cs

\(\chi_{6304}(57,\cdot)\) \(\chi_{6304}(73,\cdot)\) \(\chi_{6304}(89,\cdot)\) \(\chi_{6304}(249,\cdot)\) \(\chi_{6304}(425,\cdot)\) \(\chi_{6304}(473,\cdot)\) \(\chi_{6304}(553,\cdot)\) \(\chi_{6304}(649,\cdot)\) \(\chi_{6304}(713,\cdot)\) \(\chi_{6304}(953,\cdot)\) \(\chi_{6304}(1033,\cdot)\) \(\chi_{6304}(1065,\cdot)\) \(\chi_{6304}(1161,\cdot)\) \(\chi_{6304}(1177,\cdot)\) \(\chi_{6304}(1193,\cdot)\) \(\chi_{6304}(1209,\cdot)\) \(\chi_{6304}(1273,\cdot)\) \(\chi_{6304}(1305,\cdot)\) \(\chi_{6304}(1465,\cdot)\) \(\chi_{6304}(1481,\cdot)\) \(\chi_{6304}(1593,\cdot)\) \(\chi_{6304}(1785,\cdot)\) \(\chi_{6304}(1817,\cdot)\) \(\chi_{6304}(2041,\cdot)\) \(\chi_{6304}(2089,\cdot)\) \(\chi_{6304}(2233,\cdot)\) \(\chi_{6304}(2297,\cdot)\) \(\chi_{6304}(2361,\cdot)\) \(\chi_{6304}(2377,\cdot)\) \(\chi_{6304}(2489,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{196})$
Fixed field: Number field defined by a degree 196 polynomial (not computed)

Values on generators

\((1183,3941,3745)\) → \((1,i,e\left(\frac{139}{196}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 6304 }(57, a) \) \(-1\)\(1\)\(e\left(\frac{11}{98}\right)\)\(e\left(\frac{18}{49}\right)\)\(e\left(\frac{2}{49}\right)\)\(e\left(\frac{11}{49}\right)\)\(e\left(\frac{40}{49}\right)\)\(e\left(\frac{47}{98}\right)\)\(e\left(\frac{47}{98}\right)\)\(e\left(\frac{149}{196}\right)\)\(e\left(\frac{27}{28}\right)\)\(e\left(\frac{15}{98}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6304 }(57,a) \;\) at \(\;a = \) e.g. 2