sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(56))
M = H._module
chi = DirichletCharacter(H, M([0,7,16]))
pari:[g,chi] = znchar(Mod(4709,6304))
| Modulus: | \(6304\) | |
| Conductor: | \(6304\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(56\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6304}(301,\cdot)\)
\(\chi_{6304}(1021,\cdot)\)
\(\chi_{6304}(1149,\cdot)\)
\(\chi_{6304}(1373,\cdot)\)
\(\chi_{6304}(1493,\cdot)\)
\(\chi_{6304}(1557,\cdot)\)
\(\chi_{6304}(1877,\cdot)\)
\(\chi_{6304}(2597,\cdot)\)
\(\chi_{6304}(2725,\cdot)\)
\(\chi_{6304}(2949,\cdot)\)
\(\chi_{6304}(3069,\cdot)\)
\(\chi_{6304}(3133,\cdot)\)
\(\chi_{6304}(3453,\cdot)\)
\(\chi_{6304}(4173,\cdot)\)
\(\chi_{6304}(4301,\cdot)\)
\(\chi_{6304}(4525,\cdot)\)
\(\chi_{6304}(4645,\cdot)\)
\(\chi_{6304}(4709,\cdot)\)
\(\chi_{6304}(5029,\cdot)\)
\(\chi_{6304}(5749,\cdot)\)
\(\chi_{6304}(5877,\cdot)\)
\(\chi_{6304}(6101,\cdot)\)
\(\chi_{6304}(6221,\cdot)\)
\(\chi_{6304}(6285,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{2}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(4709, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{56}\right)\) | \(e\left(\frac{31}{56}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{51}{56}\right)\) | \(e\left(\frac{1}{56}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{56}\right)\) |
sage:chi.jacobi_sum(n)