sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(392))
M = H._module
chi = DirichletCharacter(H, M([0,343,118]))
pari:[g,chi] = znchar(Mod(45,6304))
| Modulus: | \(6304\) | |
| Conductor: | \(6304\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(392\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6304}(5,\cdot)\)
\(\chi_{6304}(45,\cdot)\)
\(\chi_{6304}(125,\cdot)\)
\(\chi_{6304}(141,\cdot)\)
\(\chi_{6304}(205,\cdot)\)
\(\chi_{6304}(229,\cdot)\)
\(\chi_{6304}(245,\cdot)\)
\(\chi_{6304}(277,\cdot)\)
\(\chi_{6304}(373,\cdot)\)
\(\chi_{6304}(381,\cdot)\)
\(\chi_{6304}(405,\cdot)\)
\(\chi_{6304}(429,\cdot)\)
\(\chi_{6304}(493,\cdot)\)
\(\chi_{6304}(589,\cdot)\)
\(\chi_{6304}(621,\cdot)\)
\(\chi_{6304}(669,\cdot)\)
\(\chi_{6304}(685,\cdot)\)
\(\chi_{6304}(693,\cdot)\)
\(\chi_{6304}(709,\cdot)\)
\(\chi_{6304}(845,\cdot)\)
\(\chi_{6304}(877,\cdot)\)
\(\chi_{6304}(933,\cdot)\)
\(\chi_{6304}(1037,\cdot)\)
\(\chi_{6304}(1093,\cdot)\)
\(\chi_{6304}(1125,\cdot)\)
\(\chi_{6304}(1261,\cdot)\)
\(\chi_{6304}(1277,\cdot)\)
\(\chi_{6304}(1285,\cdot)\)
\(\chi_{6304}(1301,\cdot)\)
\(\chi_{6304}(1349,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((1,e\left(\frac{7}{8}\right),e\left(\frac{59}{196}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(45, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{43}{392}\right)\) | \(e\left(\frac{261}{392}\right)\) | \(e\left(\frac{137}{196}\right)\) | \(e\left(\frac{43}{196}\right)\) | \(e\left(\frac{41}{392}\right)\) | \(e\left(\frac{255}{392}\right)\) | \(e\left(\frac{38}{49}\right)\) | \(e\left(\frac{71}{196}\right)\) | \(e\left(\frac{27}{56}\right)\) | \(e\left(\frac{317}{392}\right)\) |
sage:chi.jacobi_sum(n)