Properties

Label 6304.409
Modulus $6304$
Conductor $3152$
Order $196$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6304, base_ring=CyclotomicField(196)) M = H._module chi = DirichletCharacter(H, M([0,49,74]))
 
Copy content pari:[g,chi] = znchar(Mod(409,6304))
 

Basic properties

Modulus: \(6304\)
Conductor: \(3152\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(196\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3152}(2773,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6304.cp

\(\chi_{6304}(9,\cdot)\) \(\chi_{6304}(25,\cdot)\) \(\chi_{6304}(41,\cdot)\) \(\chi_{6304}(121,\cdot)\) \(\chi_{6304}(137,\cdot)\) \(\chi_{6304}(169,\cdot)\) \(\chi_{6304}(201,\cdot)\) \(\chi_{6304}(313,\cdot)\) \(\chi_{6304}(345,\cdot)\) \(\chi_{6304}(409,\cdot)\) \(\chi_{6304}(441,\cdot)\) \(\chi_{6304}(521,\cdot)\) \(\chi_{6304}(537,\cdot)\) \(\chi_{6304}(601,\cdot)\) \(\chi_{6304}(617,\cdot)\) \(\chi_{6304}(729,\cdot)\) \(\chi_{6304}(969,\cdot)\) \(\chi_{6304}(1049,\cdot)\) \(\chi_{6304}(1081,\cdot)\) \(\chi_{6304}(1097,\cdot)\) \(\chi_{6304}(1129,\cdot)\) \(\chi_{6304}(1145,\cdot)\) \(\chi_{6304}(1225,\cdot)\) \(\chi_{6304}(1289,\cdot)\) \(\chi_{6304}(1337,\cdot)\) \(\chi_{6304}(1401,\cdot)\) \(\chi_{6304}(1513,\cdot)\) \(\chi_{6304}(1641,\cdot)\) \(\chi_{6304}(1673,\cdot)\) \(\chi_{6304}(1865,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{196})$
Fixed field: Number field defined by a degree 196 polynomial (not computed)

Values on generators

\((1183,3941,3745)\) → \((1,i,e\left(\frac{37}{98}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 6304 }(409, a) \) \(1\)\(1\)\(e\left(\frac{17}{196}\right)\)\(e\left(\frac{167}{196}\right)\)\(e\left(\frac{61}{98}\right)\)\(e\left(\frac{17}{98}\right)\)\(e\left(\frac{39}{196}\right)\)\(e\left(\frac{37}{196}\right)\)\(e\left(\frac{46}{49}\right)\)\(e\left(\frac{3}{98}\right)\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{139}{196}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6304 }(409,a) \;\) at \(\;a = \) e.g. 2