sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(392))
M = H._module
chi = DirichletCharacter(H, M([196,343,332]))
pari:[g,chi] = znchar(Mod(403,6304))
| Modulus: | \(6304\) | |
| Conductor: | \(6304\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(392\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6304}(43,\cdot)\)
\(\chi_{6304}(107,\cdot)\)
\(\chi_{6304}(155,\cdot)\)
\(\chi_{6304}(163,\cdot)\)
\(\chi_{6304}(219,\cdot)\)
\(\chi_{6304}(259,\cdot)\)
\(\chi_{6304}(331,\cdot)\)
\(\chi_{6304}(371,\cdot)\)
\(\chi_{6304}(403,\cdot)\)
\(\chi_{6304}(419,\cdot)\)
\(\chi_{6304}(435,\cdot)\)
\(\chi_{6304}(459,\cdot)\)
\(\chi_{6304}(491,\cdot)\)
\(\chi_{6304}(515,\cdot)\)
\(\chi_{6304}(531,\cdot)\)
\(\chi_{6304}(563,\cdot)\)
\(\chi_{6304}(595,\cdot)\)
\(\chi_{6304}(683,\cdot)\)
\(\chi_{6304}(707,\cdot)\)
\(\chi_{6304}(739,\cdot)\)
\(\chi_{6304}(795,\cdot)\)
\(\chi_{6304}(803,\cdot)\)
\(\chi_{6304}(827,\cdot)\)
\(\chi_{6304}(835,\cdot)\)
\(\chi_{6304}(843,\cdot)\)
\(\chi_{6304}(915,\cdot)\)
\(\chi_{6304}(931,\cdot)\)
\(\chi_{6304}(995,\cdot)\)
\(\chi_{6304}(1011,\cdot)\)
\(\chi_{6304}(1123,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((-1,e\left(\frac{7}{8}\right),e\left(\frac{83}{98}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(403, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{165}{392}\right)\) | \(e\left(\frac{99}{392}\right)\) | \(e\left(\frac{177}{196}\right)\) | \(e\left(\frac{165}{196}\right)\) | \(e\left(\frac{171}{392}\right)\) | \(e\left(\frac{117}{392}\right)\) | \(e\left(\frac{33}{49}\right)\) | \(e\left(\frac{8}{49}\right)\) | \(e\left(\frac{3}{56}\right)\) | \(e\left(\frac{127}{392}\right)\) |
sage:chi.jacobi_sum(n)