sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,1,0]))
pari:[g,chi] = znchar(Mod(3941,6304))
\(\chi_{6304}(789,\cdot)\)
\(\chi_{6304}(2365,\cdot)\)
\(\chi_{6304}(3941,\cdot)\)
\(\chi_{6304}(5517,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((1,e\left(\frac{1}{8}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(3941, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) |
sage:chi.jacobi_sum(n)