Properties

Label 6304.3939
Modulus $6304$
Conductor $6304$
Order $8$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6304, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,3,4]))
 
Copy content pari:[g,chi] = znchar(Mod(3939,6304))
 

Basic properties

Modulus: \(6304\)
Conductor: \(6304\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6304.bc

\(\chi_{6304}(787,\cdot)\) \(\chi_{6304}(2363,\cdot)\) \(\chi_{6304}(3939,\cdot)\) \(\chi_{6304}(5515,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.0.3234407759571058688.4

Values on generators

\((1183,3941,3745)\) → \((-1,e\left(\frac{3}{8}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 6304 }(3939, a) \) \(-1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(i\)\(i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{3}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6304 }(3939,a) \;\) at \(\;a = \) e.g. 2