sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(392))
M = H._module
chi = DirichletCharacter(H, M([196,49,302]))
pari:[g,chi] = znchar(Mod(27,6304))
| Modulus: | \(6304\) | |
| Conductor: | \(6304\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(392\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6304}(3,\cdot)\)
\(\chi_{6304}(27,\cdot)\)
\(\chi_{6304}(67,\cdot)\)
\(\chi_{6304}(75,\cdot)\)
\(\chi_{6304}(91,\cdot)\)
\(\chi_{6304}(115,\cdot)\)
\(\chi_{6304}(123,\cdot)\)
\(\chi_{6304}(131,\cdot)\)
\(\chi_{6304}(139,\cdot)\)
\(\chi_{6304}(147,\cdot)\)
\(\chi_{6304}(179,\cdot)\)
\(\chi_{6304}(235,\cdot)\)
\(\chi_{6304}(243,\cdot)\)
\(\chi_{6304}(283,\cdot)\)
\(\chi_{6304}(323,\cdot)\)
\(\chi_{6304}(363,\cdot)\)
\(\chi_{6304}(411,\cdot)\)
\(\chi_{6304}(467,\cdot)\)
\(\chi_{6304}(547,\cdot)\)
\(\chi_{6304}(579,\cdot)\)
\(\chi_{6304}(603,\cdot)\)
\(\chi_{6304}(635,\cdot)\)
\(\chi_{6304}(715,\cdot)\)
\(\chi_{6304}(771,\cdot)\)
\(\chi_{6304}(819,\cdot)\)
\(\chi_{6304}(859,\cdot)\)
\(\chi_{6304}(899,\cdot)\)
\(\chi_{6304}(939,\cdot)\)
\(\chi_{6304}(947,\cdot)\)
\(\chi_{6304}(1003,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{151}{196}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(27, a) \) |
\(1\) | \(1\) | \(e\left(\frac{125}{392}\right)\) | \(e\left(\frac{271}{392}\right)\) | \(e\left(\frac{45}{196}\right)\) | \(e\left(\frac{125}{196}\right)\) | \(e\left(\frac{183}{392}\right)\) | \(e\left(\frac{53}{392}\right)\) | \(e\left(\frac{1}{98}\right)\) | \(e\left(\frac{195}{196}\right)\) | \(e\left(\frac{1}{56}\right)\) | \(e\left(\frac{215}{392}\right)\) |
sage:chi.jacobi_sum(n)