Properties

Label 6304.255
Modulus $6304$
Conductor $788$
Order $196$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6304, base_ring=CyclotomicField(196)) M = H._module chi = DirichletCharacter(H, M([98,0,37]))
 
Copy content pari:[g,chi] = znchar(Mod(255,6304))
 

Basic properties

Modulus: \(6304\)
Conductor: \(788\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(196\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{788}(255,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6304.cn

\(\chi_{6304}(31,\cdot)\) \(\chi_{6304}(95,\cdot)\) \(\chi_{6304}(159,\cdot)\) \(\chi_{6304}(255,\cdot)\) \(\chi_{6304}(319,\cdot)\) \(\chi_{6304}(383,\cdot)\) \(\chi_{6304}(415,\cdot)\) \(\chi_{6304}(511,\cdot)\) \(\chi_{6304}(543,\cdot)\) \(\chi_{6304}(639,\cdot)\) \(\chi_{6304}(671,\cdot)\) \(\chi_{6304}(767,\cdot)\) \(\chi_{6304}(799,\cdot)\) \(\chi_{6304}(863,\cdot)\) \(\chi_{6304}(927,\cdot)\) \(\chi_{6304}(1023,\cdot)\) \(\chi_{6304}(1087,\cdot)\) \(\chi_{6304}(1151,\cdot)\) \(\chi_{6304}(1503,\cdot)\) \(\chi_{6304}(1695,\cdot)\) \(\chi_{6304}(1727,\cdot)\) \(\chi_{6304}(1791,\cdot)\) \(\chi_{6304}(1823,\cdot)\) \(\chi_{6304}(1855,\cdot)\) \(\chi_{6304}(1983,\cdot)\) \(\chi_{6304}(2015,\cdot)\) \(\chi_{6304}(2111,\cdot)\) \(\chi_{6304}(2175,\cdot)\) \(\chi_{6304}(2239,\cdot)\) \(\chi_{6304}(2367,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{196})$
Fixed field: Number field defined by a degree 196 polynomial (not computed)

Values on generators

\((1183,3941,3745)\) → \((-1,1,e\left(\frac{37}{196}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 6304 }(255, a) \) \(1\)\(1\)\(e\left(\frac{131}{196}\right)\)\(e\left(\frac{157}{196}\right)\)\(e\left(\frac{3}{49}\right)\)\(e\left(\frac{33}{98}\right)\)\(e\left(\frac{191}{196}\right)\)\(e\left(\frac{141}{196}\right)\)\(e\left(\frac{23}{49}\right)\)\(e\left(\frac{3}{196}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{143}{196}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6304 }(255,a) \;\) at \(\;a = \) e.g. 2