sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(56))
M = H._module
chi = DirichletCharacter(H, M([28,49,44]))
pari:[g,chi] = znchar(Mod(19,6304))
| Modulus: | \(6304\) | |
| Conductor: | \(6304\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(56\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6304}(19,\cdot)\)
\(\chi_{6304}(83,\cdot)\)
\(\chi_{6304}(203,\cdot)\)
\(\chi_{6304}(427,\cdot)\)
\(\chi_{6304}(555,\cdot)\)
\(\chi_{6304}(1275,\cdot)\)
\(\chi_{6304}(1595,\cdot)\)
\(\chi_{6304}(1659,\cdot)\)
\(\chi_{6304}(1779,\cdot)\)
\(\chi_{6304}(2003,\cdot)\)
\(\chi_{6304}(2131,\cdot)\)
\(\chi_{6304}(2851,\cdot)\)
\(\chi_{6304}(3171,\cdot)\)
\(\chi_{6304}(3235,\cdot)\)
\(\chi_{6304}(3355,\cdot)\)
\(\chi_{6304}(3579,\cdot)\)
\(\chi_{6304}(3707,\cdot)\)
\(\chi_{6304}(4427,\cdot)\)
\(\chi_{6304}(4747,\cdot)\)
\(\chi_{6304}(4811,\cdot)\)
\(\chi_{6304}(4931,\cdot)\)
\(\chi_{6304}(5155,\cdot)\)
\(\chi_{6304}(5283,\cdot)\)
\(\chi_{6304}(6003,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((-1,e\left(\frac{7}{8}\right),e\left(\frac{11}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(19, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{19}{56}\right)\) | \(e\left(\frac{45}{56}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{37}{56}\right)\) | \(e\left(\frac{43}{56}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{17}{56}\right)\) |
sage:chi.jacobi_sum(n)