sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(392))
M = H._module
chi = DirichletCharacter(H, M([0,343,50]))
pari:[g,chi] = znchar(Mod(13,6304))
| Modulus: | \(6304\) | |
| Conductor: | \(6304\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(392\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6304}(13,\cdot)\)
\(\chi_{6304}(21,\cdot)\)
\(\chi_{6304}(117,\cdot)\)
\(\chi_{6304}(149,\cdot)\)
\(\chi_{6304}(165,\cdot)\)
\(\chi_{6304}(189,\cdot)\)
\(\chi_{6304}(253,\cdot)\)
\(\chi_{6304}(269,\cdot)\)
\(\chi_{6304}(349,\cdot)\)
\(\chi_{6304}(389,\cdot)\)
\(\chi_{6304}(397,\cdot)\)
\(\chi_{6304}(421,\cdot)\)
\(\chi_{6304}(461,\cdot)\)
\(\chi_{6304}(469,\cdot)\)
\(\chi_{6304}(485,\cdot)\)
\(\chi_{6304}(509,\cdot)\)
\(\chi_{6304}(517,\cdot)\)
\(\chi_{6304}(525,\cdot)\)
\(\chi_{6304}(533,\cdot)\)
\(\chi_{6304}(541,\cdot)\)
\(\chi_{6304}(573,\cdot)\)
\(\chi_{6304}(629,\cdot)\)
\(\chi_{6304}(637,\cdot)\)
\(\chi_{6304}(677,\cdot)\)
\(\chi_{6304}(717,\cdot)\)
\(\chi_{6304}(757,\cdot)\)
\(\chi_{6304}(805,\cdot)\)
\(\chi_{6304}(861,\cdot)\)
\(\chi_{6304}(941,\cdot)\)
\(\chi_{6304}(973,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((1,e\left(\frac{7}{8}\right),e\left(\frac{25}{196}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(13, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{279}{392}\right)\) | \(e\left(\frac{89}{392}\right)\) | \(e\left(\frac{73}{196}\right)\) | \(e\left(\frac{83}{196}\right)\) | \(e\left(\frac{29}{392}\right)\) | \(e\left(\frac{123}{392}\right)\) | \(e\left(\frac{46}{49}\right)\) | \(e\left(\frac{153}{196}\right)\) | \(e\left(\frac{43}{56}\right)\) | \(e\left(\frac{33}{392}\right)\) |
sage:chi.jacobi_sum(n)