Properties

Label 6300.5081
Modulus $6300$
Conductor $1575$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6300, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,25,12,15]))
 
Copy content pari:[g,chi] = znchar(Mod(5081,6300))
 

Basic properties

Modulus: \(6300\)
Conductor: \(1575\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1575}(356,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6300.ge

\(\chi_{6300}(41,\cdot)\) \(\chi_{6300}(461,\cdot)\) \(\chi_{6300}(1721,\cdot)\) \(\chi_{6300}(2561,\cdot)\) \(\chi_{6300}(2981,\cdot)\) \(\chi_{6300}(3821,\cdot)\) \(\chi_{6300}(4241,\cdot)\) \(\chi_{6300}(5081,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((3151,2801,3277,3601)\) → \((1,e\left(\frac{5}{6}\right),e\left(\frac{2}{5}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 6300 }(5081, a) \) \(1\)\(1\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6300 }(5081,a) \;\) at \(\;a = \) e.g. 2