Properties

Label 6223.ks
Modulus $6223$
Conductor $6223$
Order $126$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([51,40])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(26,6223)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6223\)
Conductor: \(6223\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{6223}(26,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{61}{126}\right)\)
\(\chi_{6223}(187,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{126}\right)\)
\(\chi_{6223}(369,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{103}{126}\right)\)
\(\chi_{6223}(430,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{83}{126}\right)\)
\(\chi_{6223}(465,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{113}{126}\right)\)
\(\chi_{6223}(549,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{59}{126}\right)\)
\(\chi_{6223}(1312,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{41}{126}\right)\)
\(\chi_{6223}(1662,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{47}{126}\right)\)
\(\chi_{6223}(1669,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{53}{126}\right)\)
\(\chi_{6223}(1713,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{126}\right)\)
\(\chi_{6223}(1902,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{85}{126}\right)\)
\(\chi_{6223}(2063,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{67}{126}\right)\)
\(\chi_{6223}(2448,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{97}{126}\right)\)
\(\chi_{6223}(2495,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{126}\right)\)
\(\chi_{6223}(2614,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{23}{126}\right)\)
\(\chi_{6223}(2866,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{71}{126}\right)\)
\(\chi_{6223}(3169,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{31}{126}\right)\)
\(\chi_{6223}(3190,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{109}{126}\right)\)
\(\chi_{6223}(3244,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{101}{126}\right)\)
\(\chi_{6223}(3246,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{37}{126}\right)\)
\(\chi_{6223}(3372,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{43}{126}\right)\)
\(\chi_{6223}(3692,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{107}{126}\right)\)
\(\chi_{6223}(3967,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{55}{126}\right)\)
\(\chi_{6223}(4422,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{79}{126}\right)\)
\(\chi_{6223}(4924,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{29}{126}\right)\)
\(\chi_{6223}(5295,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{126}\right)\)
\(\chi_{6223}(5351,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{126}\right)\)
\(\chi_{6223}(5505,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{65}{126}\right)\)
\(\chi_{6223}(5542,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{25}{126}\right)\)
\(\chi_{6223}(5624,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{125}{126}\right)\)
\(\chi_{6223}(5736,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{95}{126}\right)\)