Properties

Label 6223.be
Modulus $6223$
Conductor $127$
Order $9$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,10])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(99,6223)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6223\)
Conductor: \(127\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(9\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 127.f
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 9.9.67675234241018881.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{6223}(99,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{6223}(687,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{6223}(1373,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{6223}(3578,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{6223}(5244,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{6223}(5783,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\)