sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([6,13]))
pari:[g,chi] = znchar(Mod(4664,6223))
| Modulus: | \(6223\) | |
| Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(23,\cdot)\)
\(\chi_{6223}(39,\cdot)\)
\(\chi_{6223}(53,\cdot)\)
\(\chi_{6223}(340,\cdot)\)
\(\chi_{6223}(387,\cdot)\)
\(\chi_{6223}(466,\cdot)\)
\(\chi_{6223}(604,\cdot)\)
\(\chi_{6223}(1061,\cdot)\)
\(\chi_{6223}(1199,\cdot)\)
\(\chi_{6223}(1348,\cdot)\)
\(\chi_{6223}(1409,\cdot)\)
\(\chi_{6223}(1579,\cdot)\)
\(\chi_{6223}(1752,\cdot)\)
\(\chi_{6223}(1761,\cdot)\)
\(\chi_{6223}(1894,\cdot)\)
\(\chi_{6223}(1962,\cdot)\)
\(\chi_{6223}(2046,\cdot)\)
\(\chi_{6223}(2377,\cdot)\)
\(\chi_{6223}(3145,\cdot)\)
\(\chi_{6223}(3348,\cdot)\)
\(\chi_{6223}(3385,\cdot)\)
\(\chi_{6223}(3432,\cdot)\)
\(\chi_{6223}(3665,\cdot)\)
\(\chi_{6223}(3670,\cdot)\)
\(\chi_{6223}(3817,\cdot)\)
\(\chi_{6223}(3868,\cdot)\)
\(\chi_{6223}(3903,\cdot)\)
\(\chi_{6223}(3980,\cdot)\)
\(\chi_{6223}(4664,\cdot)\)
\(\chi_{6223}(4874,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{1}{21}\right),e\left(\frac{13}{126}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 6223 }(4664, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{126}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{103}{126}\right)\) | \(1\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{61}{126}\right)\) |
sage:chi.jacobi_sum(n)