sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([27,37]))
pari:[g,chi] = znchar(Mod(4493,6223))
| Modulus: | \(6223\) | |
| Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(83,\cdot)\)
\(\chi_{6223}(363,\cdot)\)
\(\chi_{6223}(384,\cdot)\)
\(\chi_{6223}(566,\cdot)\)
\(\chi_{6223}(601,\cdot)\)
\(\chi_{6223}(678,\cdot)\)
\(\chi_{6223}(818,\cdot)\)
\(\chi_{6223}(986,\cdot)\)
\(\chi_{6223}(1896,\cdot)\)
\(\chi_{6223}(2078,\cdot)\)
\(\chi_{6223}(2099,\cdot)\)
\(\chi_{6223}(2442,\cdot)\)
\(\chi_{6223}(2505,\cdot)\)
\(\chi_{6223}(2519,\cdot)\)
\(\chi_{6223}(2673,\cdot)\)
\(\chi_{6223}(2806,\cdot)\)
\(\chi_{6223}(2960,\cdot)\)
\(\chi_{6223}(2974,\cdot)\)
\(\chi_{6223}(3149,\cdot)\)
\(\chi_{6223}(3240,\cdot)\)
\(\chi_{6223}(3261,\cdot)\)
\(\chi_{6223}(3387,\cdot)\)
\(\chi_{6223}(3443,\cdot)\)
\(\chi_{6223}(3982,\cdot)\)
\(\chi_{6223}(4269,\cdot)\)
\(\chi_{6223}(4430,\cdot)\)
\(\chi_{6223}(4493,\cdot)\)
\(\chi_{6223}(4500,\cdot)\)
\(\chi_{6223}(4682,\cdot)\)
\(\chi_{6223}(4815,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{3}{14}\right),e\left(\frac{37}{126}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 6223 }(4493, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{59}{63}\right)\) |
sage:chi.jacobi_sum(n)