sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([87,118]))
pari:[g,chi] = znchar(Mod(2602,6223))
| Modulus: | \(6223\) | |
| Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(17,\cdot)\)
\(\chi_{6223}(136,\cdot)\)
\(\chi_{6223}(502,\cdot)\)
\(\chi_{6223}(780,\cdot)\)
\(\chi_{6223}(1013,\cdot)\)
\(\chi_{6223}(1088,\cdot)\)
\(\chi_{6223}(1179,\cdot)\)
\(\chi_{6223}(1438,\cdot)\)
\(\chi_{6223}(1468,\cdot)\)
\(\chi_{6223}(1510,\cdot)\)
\(\chi_{6223}(1804,\cdot)\)
\(\chi_{6223}(1949,\cdot)\)
\(\chi_{6223}(1986,\cdot)\)
\(\chi_{6223}(2147,\cdot)\)
\(\chi_{6223}(2208,\cdot)\)
\(\chi_{6223}(2483,\cdot)\)
\(\chi_{6223}(2602,\cdot)\)
\(\chi_{6223}(2644,\cdot)\)
\(\chi_{6223}(3090,\cdot)\)
\(\chi_{6223}(3146,\cdot)\)
\(\chi_{6223}(3209,\cdot)\)
\(\chi_{6223}(3295,\cdot)\)
\(\chi_{6223}(3337,\cdot)\)
\(\chi_{6223}(3442,\cdot)\)
\(\chi_{6223}(4016,\cdot)\)
\(\chi_{6223}(4133,\cdot)\)
\(\chi_{6223}(4406,\cdot)\)
\(\chi_{6223}(4730,\cdot)\)
\(\chi_{6223}(4847,\cdot)\)
\(\chi_{6223}(4856,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{29}{42}\right),e\left(\frac{59}{63}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 6223 }(2602, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{79}{126}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(-1\) | \(e\left(\frac{1}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{7}{18}\right)\) |
sage:chi.jacobi_sum(n)