sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([111,91]))
pari:[g,chi] = znchar(Mod(24,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(24,\cdot)\)
\(\chi_{6223}(409,\cdot)\)
\(\chi_{6223}(710,\cdot)\)
\(\chi_{6223}(740,\cdot)\)
\(\chi_{6223}(1202,\cdot)\)
\(\chi_{6223}(1298,\cdot)\)
\(\chi_{6223}(1629,\cdot)\)
\(\chi_{6223}(1741,\cdot)\)
\(\chi_{6223}(1802,\cdot)\)
\(\chi_{6223}(2091,\cdot)\)
\(\chi_{6223}(2488,\cdot)\)
\(\chi_{6223}(2630,\cdot)\)
\(\chi_{6223}(2691,\cdot)\)
\(\chi_{6223}(2980,\cdot)\)
\(\chi_{6223}(3076,\cdot)\)
\(\chi_{6223}(3377,\cdot)\)
\(\chi_{6223}(3407,\cdot)\)
\(\chi_{6223}(3519,\cdot)\)
\(\chi_{6223}(3580,\cdot)\)
\(\chi_{6223}(3869,\cdot)\)
\(\chi_{6223}(3965,\cdot)\)
\(\chi_{6223}(4266,\cdot)\)
\(\chi_{6223}(4296,\cdot)\)
\(\chi_{6223}(4408,\cdot)\)
\(\chi_{6223}(4469,\cdot)\)
\(\chi_{6223}(4758,\cdot)\)
\(\chi_{6223}(4854,\cdot)\)
\(\chi_{6223}(5155,\cdot)\)
\(\chi_{6223}(5185,\cdot)\)
\(\chi_{6223}(5297,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{37}{42}\right),e\left(\frac{13}{18}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(24, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) |
sage:chi.jacobi_sum(n)