sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([69,107]))
pari:[g,chi] = znchar(Mod(1069,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(3,\cdot)\)
\(\chi_{6223}(241,\cdot)\)
\(\chi_{6223}(243,\cdot)\)
\(\chi_{6223}(388,\cdot)\)
\(\chi_{6223}(467,\cdot)\)
\(\chi_{6223}(1069,\cdot)\)
\(\chi_{6223}(1235,\cdot)\)
\(\chi_{6223}(1426,\cdot)\)
\(\chi_{6223}(1445,\cdot)\)
\(\chi_{6223}(1718,\cdot)\)
\(\chi_{6223}(1888,\cdot)\)
\(\chi_{6223}(1970,\cdot)\)
\(\chi_{6223}(2252,\cdot)\)
\(\chi_{6223}(2271,\cdot)\)
\(\chi_{6223}(2817,\cdot)\)
\(\chi_{6223}(2903,\cdot)\)
\(\chi_{6223}(3181,\cdot)\)
\(\chi_{6223}(3398,\cdot)\)
\(\chi_{6223}(3484,\cdot)\)
\(\chi_{6223}(3993,\cdot)\)
\(\chi_{6223}(3995,\cdot)\)
\(\chi_{6223}(4149,\cdot)\)
\(\chi_{6223}(4203,\cdot)\)
\(\chi_{6223}(4401,\cdot)\)
\(\chi_{6223}(4546,\cdot)\)
\(\chi_{6223}(4756,\cdot)\)
\(\chi_{6223}(4840,\cdot)\)
\(\chi_{6223}(5031,\cdot)\)
\(\chi_{6223}(5059,\cdot)\)
\(\chi_{6223}(5500,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{23}{42}\right),e\left(\frac{107}{126}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(1069, a) \) |
\(1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{10}{63}\right)\) |
sage:chi.jacobi_sum(n)