Properties

Label 621.220
Modulus $621$
Conductor $621$
Order $99$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(198)) M = H._module chi = DirichletCharacter(H, M([22,126]))
 
Copy content pari:[g,chi] = znchar(Mod(220,621))
 

Basic properties

Modulus: \(621\)
Conductor: \(621\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(99\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 621.u

\(\chi_{621}(4,\cdot)\) \(\chi_{621}(13,\cdot)\) \(\chi_{621}(16,\cdot)\) \(\chi_{621}(25,\cdot)\) \(\chi_{621}(31,\cdot)\) \(\chi_{621}(49,\cdot)\) \(\chi_{621}(52,\cdot)\) \(\chi_{621}(58,\cdot)\) \(\chi_{621}(85,\cdot)\) \(\chi_{621}(94,\cdot)\) \(\chi_{621}(121,\cdot)\) \(\chi_{621}(124,\cdot)\) \(\chi_{621}(133,\cdot)\) \(\chi_{621}(142,\cdot)\) \(\chi_{621}(151,\cdot)\) \(\chi_{621}(169,\cdot)\) \(\chi_{621}(187,\cdot)\) \(\chi_{621}(193,\cdot)\) \(\chi_{621}(196,\cdot)\) \(\chi_{621}(202,\cdot)\) \(\chi_{621}(211,\cdot)\) \(\chi_{621}(220,\cdot)\) \(\chi_{621}(223,\cdot)\) \(\chi_{621}(232,\cdot)\) \(\chi_{621}(238,\cdot)\) \(\chi_{621}(256,\cdot)\) \(\chi_{621}(259,\cdot)\) \(\chi_{621}(265,\cdot)\) \(\chi_{621}(292,\cdot)\) \(\chi_{621}(301,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{99})$
Fixed field: Number field defined by a degree 99 polynomial

Values on generators

\((461,28)\) → \((e\left(\frac{1}{9}\right),e\left(\frac{7}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 621 }(220, a) \) \(1\)\(1\)\(e\left(\frac{38}{99}\right)\)\(e\left(\frac{76}{99}\right)\)\(e\left(\frac{19}{99}\right)\)\(e\left(\frac{86}{99}\right)\)\(e\left(\frac{5}{33}\right)\)\(e\left(\frac{19}{33}\right)\)\(e\left(\frac{17}{99}\right)\)\(e\left(\frac{79}{99}\right)\)\(e\left(\frac{25}{99}\right)\)\(e\left(\frac{53}{99}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 621 }(220,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 621 }(220,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 621 }(220,·),\chi_{ 621 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 621 }(220,·)) \;\) at \(\; a,b = \) e.g. 1,2