Properties

Label 62.g
Modulus $62$
Conductor $31$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([28])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(7,62)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(62\)
Conductor: \(31\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(15\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 31.g
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{62}(7,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{62}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{62}(19,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{62}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{62}(45,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{62}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{62}(51,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{62}(59,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\)