sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(61152, base_ring=CyclotomicField(168))
M = H._module
chi = DirichletCharacter(H, M([84,105,84,64,98]))
pari:[g,chi] = znchar(Mod(8747,61152))
| Modulus: | \(61152\) | |
| Conductor: | \(61152\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(168\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{61152}(11,\cdot)\)
\(\chi_{61152}(1523,\cdot)\)
\(\chi_{61152}(3971,\cdot)\)
\(\chi_{61152}(5891,\cdot)\)
\(\chi_{61152}(8171,\cdot)\)
\(\chi_{61152}(8339,\cdot)\)
\(\chi_{61152}(8747,\cdot)\)
\(\chi_{61152}(12539,\cdot)\)
\(\chi_{61152}(12707,\cdot)\)
\(\chi_{61152}(13115,\cdot)\)
\(\chi_{61152}(14627,\cdot)\)
\(\chi_{61152}(16907,\cdot)\)
\(\chi_{61152}(17075,\cdot)\)
\(\chi_{61152}(17483,\cdot)\)
\(\chi_{61152}(18995,\cdot)\)
\(\chi_{61152}(21275,\cdot)\)
\(\chi_{61152}(21851,\cdot)\)
\(\chi_{61152}(23363,\cdot)\)
\(\chi_{61152}(25643,\cdot)\)
\(\chi_{61152}(25811,\cdot)\)
\(\chi_{61152}(26219,\cdot)\)
\(\chi_{61152}(27731,\cdot)\)
\(\chi_{61152}(30011,\cdot)\)
\(\chi_{61152}(30179,\cdot)\)
\(\chi_{61152}(30587,\cdot)\)
\(\chi_{61152}(32099,\cdot)\)
\(\chi_{61152}(34547,\cdot)\)
\(\chi_{61152}(36467,\cdot)\)
\(\chi_{61152}(38747,\cdot)\)
\(\chi_{61152}(38915,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((34399,53509,40769,18721,28225)\) → \((-1,e\left(\frac{5}{8}\right),-1,e\left(\frac{8}{21}\right),e\left(\frac{7}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 61152 }(8747, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{71}{168}\right)\) | \(e\left(\frac{25}{56}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{95}{168}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{151}{168}\right)\) | \(e\left(\frac{23}{42}\right)\) |
sage:chi.jacobi_sum(n)