Properties

Label 61152.8747
Modulus $61152$
Conductor $61152$
Order $168$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(61152, base_ring=CyclotomicField(168)) M = H._module chi = DirichletCharacter(H, M([84,105,84,64,98]))
 
Copy content pari:[g,chi] = znchar(Mod(8747,61152))
 

Basic properties

Modulus: \(61152\)
Conductor: \(61152\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(168\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 61152.bnl

\(\chi_{61152}(11,\cdot)\) \(\chi_{61152}(1523,\cdot)\) \(\chi_{61152}(3971,\cdot)\) \(\chi_{61152}(5891,\cdot)\) \(\chi_{61152}(8171,\cdot)\) \(\chi_{61152}(8339,\cdot)\) \(\chi_{61152}(8747,\cdot)\) \(\chi_{61152}(12539,\cdot)\) \(\chi_{61152}(12707,\cdot)\) \(\chi_{61152}(13115,\cdot)\) \(\chi_{61152}(14627,\cdot)\) \(\chi_{61152}(16907,\cdot)\) \(\chi_{61152}(17075,\cdot)\) \(\chi_{61152}(17483,\cdot)\) \(\chi_{61152}(18995,\cdot)\) \(\chi_{61152}(21275,\cdot)\) \(\chi_{61152}(21851,\cdot)\) \(\chi_{61152}(23363,\cdot)\) \(\chi_{61152}(25643,\cdot)\) \(\chi_{61152}(25811,\cdot)\) \(\chi_{61152}(26219,\cdot)\) \(\chi_{61152}(27731,\cdot)\) \(\chi_{61152}(30011,\cdot)\) \(\chi_{61152}(30179,\cdot)\) \(\chi_{61152}(30587,\cdot)\) \(\chi_{61152}(32099,\cdot)\) \(\chi_{61152}(34547,\cdot)\) \(\chi_{61152}(36467,\cdot)\) \(\chi_{61152}(38747,\cdot)\) \(\chi_{61152}(38915,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{168})$
Fixed field: Number field defined by a degree 168 polynomial (not computed)

Values on generators

\((34399,53509,40769,18721,28225)\) → \((-1,e\left(\frac{5}{8}\right),-1,e\left(\frac{8}{21}\right),e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 61152 }(8747, a) \) \(-1\)\(1\)\(e\left(\frac{71}{168}\right)\)\(e\left(\frac{25}{56}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{84}\right)\)\(e\left(\frac{71}{84}\right)\)\(e\left(\frac{95}{168}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{151}{168}\right)\)\(e\left(\frac{23}{42}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 61152 }(8747,a) \;\) at \(\;a = \) e.g. 2