sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6075, base_ring=CyclotomicField(1620))
M = H._module
chi = DirichletCharacter(H, M([10,243]))
pari:[g,chi] = znchar(Mod(4133,6075))
| Modulus: | \(6075\) | |
| Conductor: | \(6075\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1620\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6075}(2,\cdot)\)
\(\chi_{6075}(23,\cdot)\)
\(\chi_{6075}(38,\cdot)\)
\(\chi_{6075}(47,\cdot)\)
\(\chi_{6075}(77,\cdot)\)
\(\chi_{6075}(83,\cdot)\)
\(\chi_{6075}(92,\cdot)\)
\(\chi_{6075}(113,\cdot)\)
\(\chi_{6075}(122,\cdot)\)
\(\chi_{6075}(128,\cdot)\)
\(\chi_{6075}(137,\cdot)\)
\(\chi_{6075}(158,\cdot)\)
\(\chi_{6075}(167,\cdot)\)
\(\chi_{6075}(173,\cdot)\)
\(\chi_{6075}(203,\cdot)\)
\(\chi_{6075}(212,\cdot)\)
\(\chi_{6075}(227,\cdot)\)
\(\chi_{6075}(248,\cdot)\)
\(\chi_{6075}(263,\cdot)\)
\(\chi_{6075}(272,\cdot)\)
\(\chi_{6075}(302,\cdot)\)
\(\chi_{6075}(308,\cdot)\)
\(\chi_{6075}(317,\cdot)\)
\(\chi_{6075}(338,\cdot)\)
\(\chi_{6075}(347,\cdot)\)
\(\chi_{6075}(353,\cdot)\)
\(\chi_{6075}(362,\cdot)\)
\(\chi_{6075}(383,\cdot)\)
\(\chi_{6075}(392,\cdot)\)
\(\chi_{6075}(398,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4376,1702)\) → \((e\left(\frac{1}{162}\right),e\left(\frac{3}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 6075 }(4133, a) \) |
\(1\) | \(1\) | \(e\left(\frac{253}{1620}\right)\) | \(e\left(\frac{253}{810}\right)\) | \(e\left(\frac{59}{324}\right)\) | \(e\left(\frac{253}{540}\right)\) | \(e\left(\frac{119}{810}\right)\) | \(e\left(\frac{1457}{1620}\right)\) | \(e\left(\frac{137}{405}\right)\) | \(e\left(\frac{253}{405}\right)\) | \(e\left(\frac{83}{540}\right)\) | \(e\left(\frac{179}{270}\right)\) |
sage:chi.jacobi_sum(n)