Properties

Label 6043.k
Modulus $6043$
Conductor $6043$
Order $159$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6043, base_ring=CyclotomicField(318)) M = H._module chi = DirichletCharacter(H, M([182])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(4,6043)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6043\)
Conductor: \(6043\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(159\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{159})$
Fixed field: Number field defined by a degree 159 polynomial (not computed)

First 31 of 104 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{6043}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{88}{159}\right)\) \(e\left(\frac{49}{53}\right)\) \(e\left(\frac{17}{159}\right)\) \(e\left(\frac{91}{159}\right)\) \(e\left(\frac{76}{159}\right)\) \(e\left(\frac{5}{159}\right)\) \(e\left(\frac{35}{53}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{20}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{159}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{34}{159}\right)\) \(e\left(\frac{23}{159}\right)\) \(e\left(\frac{152}{159}\right)\) \(e\left(\frac{10}{159}\right)\) \(e\left(\frac{17}{53}\right)\) \(e\left(\frac{37}{53}\right)\) \(e\left(\frac{40}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(256,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{159}\right)\) \(e\left(\frac{37}{53}\right)\) \(e\left(\frac{68}{159}\right)\) \(e\left(\frac{46}{159}\right)\) \(e\left(\frac{145}{159}\right)\) \(e\left(\frac{20}{159}\right)\) \(e\left(\frac{34}{53}\right)\) \(e\left(\frac{21}{53}\right)\) \(e\left(\frac{80}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(462,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{159}\right)\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{28}{159}\right)\) \(e\left(\frac{47}{159}\right)\) \(e\left(\frac{41}{159}\right)\) \(e\left(\frac{55}{159}\right)\) \(e\left(\frac{14}{53}\right)\) \(e\left(\frac{18}{53}\right)\) \(e\left(\frac{61}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(467,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{159}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{80}{159}\right)\) \(e\left(\frac{157}{159}\right)\) \(e\left(\frac{49}{159}\right)\) \(e\left(\frac{89}{159}\right)\) \(e\left(\frac{40}{53}\right)\) \(e\left(\frac{6}{53}\right)\) \(e\left(\frac{38}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(483,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{159}\right)\) \(e\left(\frac{21}{53}\right)\) \(e\left(\frac{83}{159}\right)\) \(e\left(\frac{145}{159}\right)\) \(e\left(\frac{25}{159}\right)\) \(e\left(\frac{146}{159}\right)\) \(e\left(\frac{15}{53}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{107}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(513,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{159}\right)\) \(e\left(\frac{24}{53}\right)\) \(e\left(\frac{110}{159}\right)\) \(e\left(\frac{37}{159}\right)\) \(e\left(\frac{127}{159}\right)\) \(e\left(\frac{23}{159}\right)\) \(e\left(\frac{2}{53}\right)\) \(e\left(\frac{48}{53}\right)\) \(e\left(\frac{92}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(525,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{159}\right)\) \(e\left(\frac{43}{53}\right)\) \(e\left(\frac{16}{159}\right)\) \(e\left(\frac{95}{159}\right)\) \(e\left(\frac{137}{159}\right)\) \(e\left(\frac{145}{159}\right)\) \(e\left(\frac{8}{53}\right)\) \(e\left(\frac{33}{53}\right)\) \(e\left(\frac{103}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{80}{159}\right)\) \(e\left(\frac{6}{53}\right)\) \(e\left(\frac{1}{159}\right)\) \(e\left(\frac{155}{159}\right)\) \(e\left(\frac{98}{159}\right)\) \(e\left(\frac{19}{159}\right)\) \(e\left(\frac{27}{53}\right)\) \(e\left(\frac{12}{53}\right)\) \(e\left(\frac{76}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(695,\cdot)\) \(1\) \(1\) \(e\left(\frac{148}{159}\right)\) \(e\left(\frac{27}{53}\right)\) \(e\left(\frac{137}{159}\right)\) \(e\left(\frac{88}{159}\right)\) \(e\left(\frac{70}{159}\right)\) \(e\left(\frac{59}{159}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{1}{53}\right)\) \(e\left(\frac{77}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(697,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{159}\right)\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{134}{159}\right)\) \(e\left(\frac{100}{159}\right)\) \(e\left(\frac{94}{159}\right)\) \(e\left(\frac{2}{159}\right)\) \(e\left(\frac{14}{53}\right)\) \(e\left(\frac{18}{53}\right)\) \(e\left(\frac{8}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(830,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{159}\right)\) \(e\left(\frac{52}{53}\right)\) \(e\left(\frac{44}{159}\right)\) \(e\left(\frac{142}{159}\right)\) \(e\left(\frac{19}{159}\right)\) \(e\left(\frac{41}{159}\right)\) \(e\left(\frac{22}{53}\right)\) \(e\left(\frac{51}{53}\right)\) \(e\left(\frac{5}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(858,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{159}\right)\) \(e\left(\frac{2}{53}\right)\) \(e\left(\frac{124}{159}\right)\) \(e\left(\frac{140}{159}\right)\) \(e\left(\frac{68}{159}\right)\) \(e\left(\frac{130}{159}\right)\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{4}{53}\right)\) \(e\left(\frac{43}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(890,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{159}\right)\) \(e\left(\frac{28}{53}\right)\) \(e\left(\frac{40}{159}\right)\) \(e\left(\frac{158}{159}\right)\) \(e\left(\frac{104}{159}\right)\) \(e\left(\frac{124}{159}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{19}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(893,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{159}\right)\) \(e\left(\frac{38}{53}\right)\) \(e\left(\frac{130}{159}\right)\) \(e\left(\frac{116}{159}\right)\) \(e\left(\frac{20}{159}\right)\) \(e\left(\frac{85}{159}\right)\) \(e\left(\frac{12}{53}\right)\) \(e\left(\frac{23}{53}\right)\) \(e\left(\frac{22}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(897,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{159}\right)\) \(e\left(\frac{14}{53}\right)\) \(e\left(\frac{20}{159}\right)\) \(e\left(\frac{79}{159}\right)\) \(e\left(\frac{52}{159}\right)\) \(e\left(\frac{62}{159}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{28}{53}\right)\) \(e\left(\frac{89}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(975,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{159}\right)\) \(e\left(\frac{36}{53}\right)\) \(e\left(\frac{112}{159}\right)\) \(e\left(\frac{29}{159}\right)\) \(e\left(\frac{5}{159}\right)\) \(e\left(\frac{61}{159}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{19}{53}\right)\) \(e\left(\frac{85}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(986,\cdot)\) \(1\) \(1\) \(e\left(\frac{158}{159}\right)\) \(e\left(\frac{41}{53}\right)\) \(e\left(\frac{157}{159}\right)\) \(e\left(\frac{8}{159}\right)\) \(e\left(\frac{122}{159}\right)\) \(e\left(\frac{121}{159}\right)\) \(e\left(\frac{52}{53}\right)\) \(e\left(\frac{29}{53}\right)\) \(e\left(\frac{7}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(1024,\cdot)\) \(1\) \(1\) \(e\left(\frac{122}{159}\right)\) \(e\left(\frac{33}{53}\right)\) \(e\left(\frac{85}{159}\right)\) \(e\left(\frac{137}{159}\right)\) \(e\left(\frac{62}{159}\right)\) \(e\left(\frac{25}{159}\right)\) \(e\left(\frac{16}{53}\right)\) \(e\left(\frac{13}{53}\right)\) \(e\left(\frac{100}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(1221,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{159}\right)\) \(e\left(\frac{13}{53}\right)\) \(e\left(\frac{64}{159}\right)\) \(e\left(\frac{62}{159}\right)\) \(e\left(\frac{71}{159}\right)\) \(e\left(\frac{103}{159}\right)\) \(e\left(\frac{32}{53}\right)\) \(e\left(\frac{26}{53}\right)\) \(e\left(\frac{94}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(1294,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{159}\right)\) \(e\left(\frac{48}{53}\right)\) \(e\left(\frac{8}{159}\right)\) \(e\left(\frac{127}{159}\right)\) \(e\left(\frac{148}{159}\right)\) \(e\left(\frac{152}{159}\right)\) \(e\left(\frac{4}{53}\right)\) \(e\left(\frac{43}{53}\right)\) \(e\left(\frac{131}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(1305,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{159}\right)\) \(e\left(\frac{16}{53}\right)\) \(e\left(\frac{38}{159}\right)\) \(e\left(\frac{7}{159}\right)\) \(e\left(\frac{67}{159}\right)\) \(e\left(\frac{86}{159}\right)\) \(e\left(\frac{19}{53}\right)\) \(e\left(\frac{32}{53}\right)\) \(e\left(\frac{26}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(1349,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{159}\right)\) \(e\left(\frac{1}{53}\right)\) \(e\left(\frac{62}{159}\right)\) \(e\left(\frac{70}{159}\right)\) \(e\left(\frac{34}{159}\right)\) \(e\left(\frac{65}{159}\right)\) \(e\left(\frac{31}{53}\right)\) \(e\left(\frac{2}{53}\right)\) \(e\left(\frac{101}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(1407,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{159}\right)\) \(e\left(\frac{5}{53}\right)\) \(e\left(\frac{98}{159}\right)\) \(e\left(\frac{85}{159}\right)\) \(e\left(\frac{64}{159}\right)\) \(e\left(\frac{113}{159}\right)\) \(e\left(\frac{49}{53}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{134}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(1453,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{159}\right)\) \(e\left(\frac{15}{53}\right)\) \(e\left(\frac{82}{159}\right)\) \(e\left(\frac{149}{159}\right)\) \(e\left(\frac{86}{159}\right)\) \(e\left(\frac{127}{159}\right)\) \(e\left(\frac{41}{53}\right)\) \(e\left(\frac{30}{53}\right)\) \(e\left(\frac{31}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(1511,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{159}\right)\) \(e\left(\frac{4}{53}\right)\) \(e\left(\frac{142}{159}\right)\) \(e\left(\frac{68}{159}\right)\) \(e\left(\frac{83}{159}\right)\) \(e\left(\frac{154}{159}\right)\) \(e\left(\frac{18}{53}\right)\) \(e\left(\frac{8}{53}\right)\) \(e\left(\frac{139}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(1642,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{159}\right)\) \(e\left(\frac{47}{53}\right)\) \(e\left(\frac{158}{159}\right)\) \(e\left(\frac{4}{159}\right)\) \(e\left(\frac{61}{159}\right)\) \(e\left(\frac{140}{159}\right)\) \(e\left(\frac{26}{53}\right)\) \(e\left(\frac{41}{53}\right)\) \(e\left(\frac{83}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(1646,\cdot)\) \(1\) \(1\) \(e\left(\frac{151}{159}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{143}{159}\right)\) \(e\left(\frac{64}{159}\right)\) \(e\left(\frac{22}{159}\right)\) \(e\left(\frac{14}{159}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{56}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(1713,\cdot)\) \(1\) \(1\) \(e\left(\frac{116}{159}\right)\) \(e\left(\frac{14}{53}\right)\) \(e\left(\frac{73}{159}\right)\) \(e\left(\frac{26}{159}\right)\) \(e\left(\frac{158}{159}\right)\) \(e\left(\frac{115}{159}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{28}{53}\right)\) \(e\left(\frac{142}{159}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6043}(1734,\cdot)\) \(1\) \(1\) \(e\left(\frac{136}{159}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{113}{159}\right)\) \(e\left(\frac{25}{159}\right)\) \(e\left(\frac{103}{159}\right)\) \(e\left(\frac{80}{159}\right)\) \(e\left(\frac{30}{53}\right)\) \(e\left(\frac{31}{53}\right)\) \(e\left(\frac{2}{159}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6043}(1816,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{159}\right)\) \(e\left(\frac{17}{53}\right)\) \(e\left(\frac{47}{159}\right)\) \(e\left(\frac{130}{159}\right)\) \(e\left(\frac{154}{159}\right)\) \(e\left(\frac{98}{159}\right)\) \(e\left(\frac{50}{53}\right)\) \(e\left(\frac{34}{53}\right)\) \(e\left(\frac{74}{159}\right)\) \(e\left(\frac{2}{3}\right)\)