Properties

Label 6043.g
Modulus $6043$
Conductor $6043$
Order $53$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6043, base_ring=CyclotomicField(106)) M = H._module chi = DirichletCharacter(H, M([76])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(64,6043)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6043\)
Conductor: \(6043\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(53\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{53})$
Fixed field: Number field defined by a degree 53 polynomial

First 31 of 52 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{6043}(64,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{53}\right)\) \(e\left(\frac{41}{53}\right)\) \(e\left(\frac{17}{53}\right)\) \(e\left(\frac{38}{53}\right)\) \(e\left(\frac{23}{53}\right)\) \(e\left(\frac{5}{53}\right)\) \(e\left(\frac{52}{53}\right)\) \(e\left(\frac{29}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(1\)
\(\chi_{6043}(454,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{53}\right)\) \(e\left(\frac{21}{53}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{13}{53}\right)\) \(e\left(\frac{26}{53}\right)\) \(e\left(\frac{31}{53}\right)\) \(e\left(\frac{15}{53}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{18}{53}\right)\) \(1\)
\(\chi_{6043}(654,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{26}{53}\right)\) \(e\left(\frac{52}{53}\right)\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{30}{53}\right)\) \(e\left(\frac{31}{53}\right)\) \(e\left(\frac{36}{53}\right)\) \(1\)
\(\chi_{6043}(809,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{53}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{30}{53}\right)\) \(e\left(\frac{39}{53}\right)\) \(e\left(\frac{25}{53}\right)\) \(e\left(\frac{40}{53}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{1}{53}\right)\) \(1\)
\(\chi_{6043}(811,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{53}\right)\) \(e\left(\frac{36}{53}\right)\) \(e\left(\frac{2}{53}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{37}{53}\right)\) \(e\left(\frac{38}{53}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{19}{53}\right)\) \(e\left(\frac{46}{53}\right)\) \(1\)
\(\chi_{6043}(817,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{53}\right)\) \(e\left(\frac{49}{53}\right)\) \(e\left(\frac{41}{53}\right)\) \(e\left(\frac{48}{53}\right)\) \(e\left(\frac{43}{53}\right)\) \(e\left(\frac{37}{53}\right)\) \(e\left(\frac{35}{53}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{42}{53}\right)\) \(1\)
\(\chi_{6043}(1194,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{53}\right)\) \(e\left(\frac{44}{53}\right)\) \(e\left(\frac{26}{53}\right)\) \(e\left(\frac{2}{53}\right)\) \(e\left(\frac{4}{53}\right)\) \(e\left(\frac{17}{53}\right)\) \(e\left(\frac{39}{53}\right)\) \(e\left(\frac{35}{53}\right)\) \(e\left(\frac{15}{53}\right)\) \(1\)
\(\chi_{6043}(1329,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{53}\right)\) \(e\left(\frac{33}{53}\right)\) \(e\left(\frac{46}{53}\right)\) \(e\left(\frac{28}{53}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{26}{53}\right)\) \(e\left(\frac{16}{53}\right)\) \(e\left(\frac{13}{53}\right)\) \(e\left(\frac{51}{53}\right)\) \(1\)
\(\chi_{6043}(1429,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{53}\right)\) \(e\left(\frac{48}{53}\right)\) \(e\left(\frac{38}{53}\right)\) \(e\left(\frac{7}{53}\right)\) \(e\left(\frac{14}{53}\right)\) \(e\left(\frac{33}{53}\right)\) \(e\left(\frac{4}{53}\right)\) \(e\left(\frac{43}{53}\right)\) \(e\left(\frac{26}{53}\right)\) \(1\)
\(\chi_{6043}(1454,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{53}\right)\) \(e\left(\frac{27}{53}\right)\) \(e\left(\frac{28}{53}\right)\) \(e\left(\frac{47}{53}\right)\) \(e\left(\frac{41}{53}\right)\) \(e\left(\frac{2}{53}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{1}{53}\right)\) \(e\left(\frac{8}{53}\right)\) \(1\)
\(\chi_{6043}(1639,\cdot)\) \(1\) \(1\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{28}{53}\right)\) \(e\left(\frac{31}{53}\right)\) \(e\left(\frac{35}{53}\right)\) \(e\left(\frac{17}{53}\right)\) \(e\left(\frac{6}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{24}{53}\right)\) \(1\)
\(\chi_{6043}(1685,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{53}\right)\) \(e\left(\frac{13}{53}\right)\) \(e\left(\frac{39}{53}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{6}{53}\right)\) \(e\left(\frac{52}{53}\right)\) \(e\left(\frac{32}{53}\right)\) \(e\left(\frac{26}{53}\right)\) \(e\left(\frac{49}{53}\right)\) \(1\)
\(\chi_{6043}(1735,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{53}\right)\) \(e\left(\frac{18}{53}\right)\) \(e\left(\frac{1}{53}\right)\) \(e\left(\frac{49}{53}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{19}{53}\right)\) \(e\left(\frac{28}{53}\right)\) \(e\left(\frac{36}{53}\right)\) \(e\left(\frac{23}{53}\right)\) \(1\)
\(\chi_{6043}(1837,\cdot)\) \(1\) \(1\) \(e\left(\frac{30}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{7}{53}\right)\) \(e\left(\frac{25}{53}\right)\) \(e\left(\frac{50}{53}\right)\) \(e\left(\frac{27}{53}\right)\) \(e\left(\frac{37}{53}\right)\) \(e\left(\frac{40}{53}\right)\) \(e\left(\frac{2}{53}\right)\) \(1\)
\(\chi_{6043}(1848,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{53}\right)\) \(e\left(\frac{5}{53}\right)\) \(e\left(\frac{15}{53}\right)\) \(e\left(\frac{46}{53}\right)\) \(e\left(\frac{39}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{49}{53}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{27}{53}\right)\) \(1\)
\(\chi_{6043}(2100,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{53}\right)\) \(e\left(\frac{39}{53}\right)\) \(e\left(\frac{11}{53}\right)\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{18}{53}\right)\) \(e\left(\frac{50}{53}\right)\) \(e\left(\frac{43}{53}\right)\) \(e\left(\frac{25}{53}\right)\) \(e\left(\frac{41}{53}\right)\) \(1\)
\(\chi_{6043}(2164,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{2}{53}\right)\) \(e\left(\frac{6}{53}\right)\) \(e\left(\frac{29}{53}\right)\) \(e\left(\frac{5}{53}\right)\) \(e\left(\frac{8}{53}\right)\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{4}{53}\right)\) \(e\left(\frac{32}{53}\right)\) \(1\)
\(\chi_{6043}(2165,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{53}\right)\) \(e\left(\frac{16}{53}\right)\) \(e\left(\frac{48}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{40}{53}\right)\) \(e\left(\frac{11}{53}\right)\) \(e\left(\frac{19}{53}\right)\) \(e\left(\frac{32}{53}\right)\) \(e\left(\frac{44}{53}\right)\) \(1\)
\(\chi_{6043}(2266,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{6}{53}\right)\) \(e\left(\frac{18}{53}\right)\) \(e\left(\frac{34}{53}\right)\) \(e\left(\frac{15}{53}\right)\) \(e\left(\frac{24}{53}\right)\) \(e\left(\frac{27}{53}\right)\) \(e\left(\frac{12}{53}\right)\) \(e\left(\frac{43}{53}\right)\) \(1\)
\(\chi_{6043}(2295,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{53}\right)\) \(e\left(\frac{17}{53}\right)\) \(e\left(\frac{51}{53}\right)\) \(e\left(\frac{8}{53}\right)\) \(e\left(\frac{16}{53}\right)\) \(e\left(\frac{15}{53}\right)\) \(e\left(\frac{50}{53}\right)\) \(e\left(\frac{34}{53}\right)\) \(e\left(\frac{7}{53}\right)\) \(1\)
\(\chi_{6043}(2411,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{53}\right)\) \(e\left(\frac{15}{53}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{32}{53}\right)\) \(e\left(\frac{11}{53}\right)\) \(e\left(\frac{7}{53}\right)\) \(e\left(\frac{41}{53}\right)\) \(e\left(\frac{30}{53}\right)\) \(e\left(\frac{28}{53}\right)\) \(1\)
\(\chi_{6043}(2534,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{53}\right)\) \(e\left(\frac{38}{53}\right)\) \(e\left(\frac{8}{53}\right)\) \(e\left(\frac{21}{53}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{46}{53}\right)\) \(e\left(\frac{12}{53}\right)\) \(e\left(\frac{23}{53}\right)\) \(e\left(\frac{25}{53}\right)\) \(1\)
\(\chi_{6043}(2575,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{53}\right)\) \(e\left(\frac{40}{53}\right)\) \(e\left(\frac{14}{53}\right)\) \(e\left(\frac{50}{53}\right)\) \(e\left(\frac{47}{53}\right)\) \(e\left(\frac{1}{53}\right)\) \(e\left(\frac{21}{53}\right)\) \(e\left(\frac{27}{53}\right)\) \(e\left(\frac{4}{53}\right)\) \(1\)
\(\chi_{6043}(2751,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{53}\right)\) \(e\left(\frac{8}{53}\right)\) \(e\left(\frac{24}{53}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{20}{53}\right)\) \(e\left(\frac{32}{53}\right)\) \(e\left(\frac{36}{53}\right)\) \(e\left(\frac{16}{53}\right)\) \(e\left(\frac{22}{53}\right)\) \(1\)
\(\chi_{6043}(2759,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{53}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{29}{53}\right)\) \(e\left(\frac{43}{53}\right)\) \(e\left(\frac{33}{53}\right)\) \(e\left(\frac{21}{53}\right)\) \(e\left(\frac{17}{53}\right)\) \(e\left(\frac{37}{53}\right)\) \(e\left(\frac{31}{53}\right)\) \(1\)
\(\chi_{6043}(3229,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{53}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{17}{53}\right)\) \(e\left(\frac{34}{53}\right)\) \(e\left(\frac{12}{53}\right)\) \(e\left(\frac{40}{53}\right)\) \(e\left(\frac{6}{53}\right)\) \(e\left(\frac{48}{53}\right)\) \(1\)
\(\chi_{6043}(3345,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{53}\right)\) \(e\left(\frac{52}{53}\right)\) \(e\left(\frac{50}{53}\right)\) \(e\left(\frac{12}{53}\right)\) \(e\left(\frac{24}{53}\right)\) \(e\left(\frac{49}{53}\right)\) \(e\left(\frac{22}{53}\right)\) \(e\left(\frac{51}{53}\right)\) \(e\left(\frac{37}{53}\right)\) \(1\)
\(\chi_{6043}(3432,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{53}\right)\) \(e\left(\frac{51}{53}\right)\) \(e\left(\frac{47}{53}\right)\) \(e\left(\frac{24}{53}\right)\) \(e\left(\frac{48}{53}\right)\) \(e\left(\frac{45}{53}\right)\) \(e\left(\frac{44}{53}\right)\) \(e\left(\frac{49}{53}\right)\) \(e\left(\frac{21}{53}\right)\) \(1\)
\(\chi_{6043}(3433,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{53}\right)\) \(e\left(\frac{14}{53}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{44}{53}\right)\) \(e\left(\frac{35}{53}\right)\) \(e\left(\frac{3}{53}\right)\) \(e\left(\frac{10}{53}\right)\) \(e\left(\frac{28}{53}\right)\) \(e\left(\frac{12}{53}\right)\) \(1\)
\(\chi_{6043}(3455,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{53}\right)\) \(e\left(\frac{46}{53}\right)\) \(e\left(\frac{32}{53}\right)\) \(e\left(\frac{31}{53}\right)\) \(e\left(\frac{9}{53}\right)\) \(e\left(\frac{25}{53}\right)\) \(e\left(\frac{48}{53}\right)\) \(e\left(\frac{39}{53}\right)\) \(e\left(\frac{47}{53}\right)\) \(1\)
\(\chi_{6043}(3490,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{53}\right)\) \(e\left(\frac{23}{53}\right)\) \(e\left(\frac{16}{53}\right)\) \(e\left(\frac{42}{53}\right)\) \(e\left(\frac{31}{53}\right)\) \(e\left(\frac{39}{53}\right)\) \(e\left(\frac{24}{53}\right)\) \(e\left(\frac{46}{53}\right)\) \(e\left(\frac{50}{53}\right)\) \(1\)