Properties

Label 5950.en
Modulus $5950$
Conductor $175$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5950, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([21,50,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(103,5950)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5950\)
Conductor: \(175\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 175.x
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(19\) \(23\) \(27\) \(29\) \(31\) \(33\)
\(\chi_{5950}(103,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{13}{60}\right)\)
\(\chi_{5950}(647,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{23}{60}\right)\)
\(\chi_{5950}(817,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{60}\right)\)
\(\chi_{5950}(1123,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{29}{60}\right)\)
\(\chi_{5950}(1837,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{60}\right)\)
\(\chi_{5950}(2313,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{41}{60}\right)\)
\(\chi_{5950}(2483,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{37}{60}\right)\)
\(\chi_{5950}(3027,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{59}{60}\right)\)
\(\chi_{5950}(3197,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{43}{60}\right)\)
\(\chi_{5950}(3503,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{53}{60}\right)\)
\(\chi_{5950}(3673,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{49}{60}\right)\)
\(\chi_{5950}(4217,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{47}{60}\right)\)
\(\chi_{5950}(4387,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{31}{60}\right)\)
\(\chi_{5950}(4863,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{60}\right)\)
\(\chi_{5950}(5577,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{19}{60}\right)\)
\(\chi_{5950}(5883,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{17}{60}\right)\)