Properties

Label 586971.37
Modulus $586971$
Conductor $65219$
Order $12705$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(586971, base_ring=CyclotomicField(25410))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,19360,23982]))
 
pari: [g,chi] = znchar(Mod(37,586971))
 

Basic properties

Modulus: \(586971\)
Conductor: \(65219\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12705\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{65219}(37,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 586971.rj

\(\chi_{586971}(37,\cdot)\) \(\chi_{586971}(163,\cdot)\) \(\chi_{586971}(235,\cdot)\) \(\chi_{586971}(289,\cdot)\) \(\chi_{586971}(478,\cdot)\) \(\chi_{586971}(676,\cdot)\) \(\chi_{586971}(730,\cdot)\) \(\chi_{586971}(982,\cdot)\) \(\chi_{586971}(1054,\cdot)\) \(\chi_{586971}(1171,\cdot)\) \(\chi_{586971}(1180,\cdot)\) \(\chi_{586971}(1369,\cdot)\) \(\chi_{586971}(1423,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{12705})$
Fixed field: Number field defined by a degree 12705 polynomial (not computed)

Values on generators

\((130439,179686,73207)\) → \((1,e\left(\frac{16}{21}\right),e\left(\frac{571}{605}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 586971 }(37, a) \) \(1\)\(1\)\(e\left(\frac{9571}{12705}\right)\)\(e\left(\frac{6437}{12705}\right)\)\(e\left(\frac{9589}{12705}\right)\)\(e\left(\frac{1101}{4235}\right)\)\(e\left(\frac{1291}{2541}\right)\)\(e\left(\frac{2747}{4235}\right)\)\(e\left(\frac{169}{12705}\right)\)\(e\left(\frac{1424}{12705}\right)\)\(e\left(\frac{664}{1815}\right)\)\(e\left(\frac{1107}{4235}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 586971 }(37,a) \;\) at \(\;a = \) e.g. 2