Properties

Label 586971.8
Modulus $586971$
Conductor $195657$
Order $8470$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(586971, base_ring=CyclotomicField(8470))
 
M = H._module
 
chi = DirichletCharacter(H, M([4235,7260,21]))
 
pari: [g,chi] = znchar(Mod(8,586971))
 

Basic properties

Modulus: \(586971\)
Conductor: \(195657\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8470\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{195657}(8,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 586971.rd

\(\chi_{586971}(8,\cdot)\) \(\chi_{586971}(134,\cdot)\) \(\chi_{586971}(260,\cdot)\) \(\chi_{586971}(512,\cdot)\) \(\chi_{586971}(701,\cdot)\) \(\chi_{586971}(827,\cdot)\) \(\chi_{586971}(953,\cdot)\) \(\chi_{586971}(1205,\cdot)\) \(\chi_{586971}(1394,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{4235})$
Fixed field: Number field defined by a degree 8470 polynomial (not computed)

Values on generators

\((130439,179686,73207)\) → \((-1,e\left(\frac{6}{7}\right),e\left(\frac{3}{1210}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 586971 }(8, a) \) \(1\)\(1\)\(e\left(\frac{3338}{4235}\right)\)\(e\left(\frac{2441}{4235}\right)\)\(e\left(\frac{6889}{8470}\right)\)\(e\left(\frac{1544}{4235}\right)\)\(e\left(\frac{1019}{1694}\right)\)\(e\left(\frac{2231}{8470}\right)\)\(e\left(\frac{647}{4235}\right)\)\(e\left(\frac{1367}{4235}\right)\)\(e\left(\frac{799}{1210}\right)\)\(e\left(\frac{3301}{8470}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 586971 }(8,a) \;\) at \(\;a = \) e.g. 2