from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(586971, base_ring=CyclotomicField(25410))
M = H._module
chi = DirichletCharacter(H, M([21175,16335,10647]))
pari: [g,chi] = znchar(Mod(986,586971))
Basic properties
Modulus: | \(586971\) | |
Conductor: | \(586971\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(25410\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 586971.sc
\(\chi_{586971}(41,\cdot)\) \(\chi_{586971}(83,\cdot)\) \(\chi_{586971}(167,\cdot)\) \(\chi_{586971}(272,\cdot)\) \(\chi_{586971}(398,\cdot)\) \(\chi_{586971}(545,\cdot)\) \(\chi_{586971}(776,\cdot)\) \(\chi_{586971}(860,\cdot)\) \(\chi_{586971}(986,\cdot)\) \(\chi_{586971}(1091,\cdot)\) \(\chi_{586971}(1217,\cdot)\) \(\chi_{586971}(1238,\cdot)\) \(\chi_{586971}(1427,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | $\Q(\zeta_{12705})$ |
Fixed field: | Number field defined by a degree 25410 polynomial (not computed) |
Values on generators
\((130439,179686,73207)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{9}{14}\right),e\left(\frac{507}{1210}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
\( \chi_{ 586971 }(986, a) \) | \(-1\) | \(1\) | \(e\left(\frac{12281}{12705}\right)\) | \(e\left(\frac{11857}{12705}\right)\) | \(e\left(\frac{11524}{12705}\right)\) | \(e\left(\frac{3811}{4235}\right)\) | \(e\left(\frac{740}{847}\right)\) | \(e\left(\frac{1396}{12705}\right)\) | \(e\left(\frac{11009}{12705}\right)\) | \(e\left(\frac{1641}{8470}\right)\) | \(e\left(\frac{58}{605}\right)\) | \(e\left(\frac{10676}{12705}\right)\) |
sage: chi.jacobi_sum(n)