Properties

Label 586971.629
Modulus $586971$
Conductor $195657$
Order $8470$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(586971, base_ring=CyclotomicField(8470))
 
M = H._module
 
chi = DirichletCharacter(H, M([4235,3025,637]))
 
pari: [g,chi] = znchar(Mod(629,586971))
 

Basic properties

Modulus: \(586971\)
Conductor: \(195657\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8470\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{195657}(629,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 586971.rb

\(\chi_{586971}(62,\cdot)\) \(\chi_{586971}(314,\cdot)\) \(\chi_{586971}(503,\cdot)\) \(\chi_{586971}(629,\cdot)\) \(\chi_{586971}(755,\cdot)\) \(\chi_{586971}(1007,\cdot)\) \(\chi_{586971}(1196,\cdot)\) \(\chi_{586971}(1448,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{4235})$
Fixed field: Number field defined by a degree 8470 polynomial (not computed)

Values on generators

\((130439,179686,73207)\) → \((-1,e\left(\frac{5}{14}\right),e\left(\frac{91}{1210}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 586971 }(629, a) \) \(-1\)\(1\)\(e\left(\frac{3646}{4235}\right)\)\(e\left(\frac{3057}{4235}\right)\)\(e\left(\frac{2944}{4235}\right)\)\(e\left(\frac{2468}{4235}\right)\)\(e\left(\frac{471}{847}\right)\)\(e\left(\frac{461}{4235}\right)\)\(e\left(\frac{1879}{4235}\right)\)\(e\left(\frac{3273}{8470}\right)\)\(e\left(\frac{119}{605}\right)\)\(e\left(\frac{1766}{4235}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 586971 }(629,a) \;\) at \(\;a = \) e.g. 2