Properties

Label 5850.4861
Modulus $5850$
Conductor $325$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5850, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([0,8,5]))
 
Copy content pari:[g,chi] = znchar(Mod(4861,5850))
 

Basic properties

Modulus: \(5850\)
Conductor: \(325\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{325}(311,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5850.ce

\(\chi_{5850}(181,\cdot)\) \(\chi_{5850}(2521,\cdot)\) \(\chi_{5850}(3691,\cdot)\) \(\chi_{5850}(4861,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.56654815673828125.1

Values on generators

\((3251,3277,2251)\) → \((1,e\left(\frac{4}{5}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 5850 }(4861, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5850 }(4861,a) \;\) at \(\;a = \) e.g. 2