# Properties

 Modulus $585$ Structure $$C_{2}\times C_{12}\times C_{12}$$ Order $288$

Show commands: PariGP / SageMath

sage: H = DirichletGroup(585)

pari: g = idealstar(,585,2)

## Character group

 sage: G.order()  pari: g.no Order = 288 sage: H.invariants()  pari: g.cyc Structure = $$C_{2}\times C_{12}\times C_{12}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{585}(326,\cdot)$, $\chi_{585}(352,\cdot)$, $\chi_{585}(496,\cdot)$

## First 32 of 288 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive $$-1$$ $$1$$ $$2$$ $$4$$ $$7$$ $$8$$ $$11$$ $$14$$ $$16$$ $$17$$ $$19$$ $$22$$
$$\chi_{585}(1,\cdot)$$ 585.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{585}(2,\cdot)$$ 585.cb 12 yes $$-1$$ $$1$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$
$$\chi_{585}(4,\cdot)$$ 585.bx 6 yes $$1$$ $$1$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$
$$\chi_{585}(7,\cdot)$$ 585.dt 12 yes $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{585}(8,\cdot)$$ 585.m 4 no $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$i$$ $$1$$ $$1$$ $$-i$$ $$-i$$ $$-i$$
$$\chi_{585}(11,\cdot)$$ 585.cm 12 no $$1$$ $$1$$ $$-i$$ $$-1$$ $$e\left(\frac{1}{12}\right)$$ $$i$$ $$i$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$1$$
$$\chi_{585}(14,\cdot)$$ 585.bj 6 no $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{585}(16,\cdot)$$ 585.l 3 no $$1$$ $$1$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$
$$\chi_{585}(17,\cdot)$$ 585.cv 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{585}(19,\cdot)$$ 585.dg 12 no $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$e\left(\frac{11}{12}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{585}(22,\cdot)$$ 585.cp 12 yes $$-1$$ $$1$$ $$i$$ $$-1$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$
$$\chi_{585}(23,\cdot)$$ 585.cr 12 yes $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$
$$\chi_{585}(28,\cdot)$$ 585.dp 12 no $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$
$$\chi_{585}(29,\cdot)$$ 585.by 6 yes $$-1$$ $$1$$ $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$
$$\chi_{585}(31,\cdot)$$ 585.cy 12 no $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$-i$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{585}(32,\cdot)$$ 585.cb 12 yes $$-1$$ $$1$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$-i$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$i$$
$$\chi_{585}(34,\cdot)$$ 585.db 12 yes $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$i$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{585}(37,\cdot)$$ 585.dp 12 no $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{12}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{585}(38,\cdot)$$ 585.cs 12 yes $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$i$$ $$1$$ $$e\left(\frac{1}{12}\right)$$
$$\chi_{585}(41,\cdot)$$ 585.dd 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$-i$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{585}(43,\cdot)$$ 585.dl 12 yes $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$
$$\chi_{585}(44,\cdot)$$ 585.q 4 no $$1$$ $$1$$ $$-i$$ $$-1$$ $$-i$$ $$i$$ $$-i$$ $$-1$$ $$1$$ $$-1$$ $$-i$$ $$-1$$
$$\chi_{585}(46,\cdot)$$ 585.dh 12 no $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$e\left(\frac{5}{12}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{585}(47,\cdot)$$ 585.cd 12 yes $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$i$$ $$-i$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{585}(49,\cdot)$$ 585.bk 6 yes $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{585}(53,\cdot)$$ 585.p 4 no $$1$$ $$1$$ $$i$$ $$-1$$ $$-i$$ $$-i$$ $$-1$$ $$1$$ $$1$$ $$i$$ $$-1$$ $$-i$$
$$\chi_{585}(56,\cdot)$$ 585.bc 6 no $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{585}(58,\cdot)$$ 585.ca 12 yes $$1$$ $$1$$ $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$i$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$
$$\chi_{585}(59,\cdot)$$ 585.cn 12 yes $$1$$ $$1$$ $$i$$ $$-1$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$ $$i$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-1$$
$$\chi_{585}(61,\cdot)$$ 585.k 3 no $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{585}(62,\cdot)$$ 585.cv 12 no $$1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{585}(64,\cdot)$$ 585.h 2 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$