Properties

Label 583.t
Modulus $583$
Conductor $583$
Order $130$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(583, base_ring=CyclotomicField(130)) M = H._module chi = DirichletCharacter(H, M([26,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(4,583)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(583\)
Conductor: \(583\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(130\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{65})$
Fixed field: Number field defined by a degree 130 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{583}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{79}{130}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{61}{65}\right)\) \(e\left(\frac{93}{130}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{583}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{17}{130}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{99}{130}\right)\) \(e\left(\frac{54}{65}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{583}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{130}\right)\) \(e\left(\frac{17}{130}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{21}{130}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{107}{130}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{583}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{130}\right)\) \(e\left(\frac{53}{130}\right)\) \(e\left(\frac{36}{65}\right)\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{43}{130}\right)\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{583}(38,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{130}\right)\) \(e\left(\frac{81}{130}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{123}{130}\right)\) \(e\left(\frac{49}{65}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{51}{130}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{23}{26}\right)\)
\(\chi_{583}(59,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{63}{130}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{9}{130}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{83}{130}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{583}(60,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{130}\right)\) \(e\left(\frac{101}{130}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{29}{65}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{36}{65}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{583}(64,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{130}\right)\) \(e\left(\frac{99}{130}\right)\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{107}{130}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{19}{130}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{583}(70,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{130}\right)\) \(e\left(\frac{113}{130}\right)\) \(e\left(\frac{51}{65}\right)\) \(e\left(\frac{109}{130}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{583}(82,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{130}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{583}(91,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{130}\right)\) \(e\left(\frac{107}{130}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{54}{65}\right)\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{42}{65}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{23}{26}\right)\)
\(\chi_{583}(93,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{130}\right)\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{103}{130}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{11}{130}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{583}(113,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{130}\right)\) \(e\left(\frac{127}{130}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{583}(115,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{130}\right)\) \(e\left(\frac{41}{130}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{43}{130}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{21}{130}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{583}(135,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{130}\right)\) \(e\left(\frac{57}{130}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{101}{130}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{7}{130}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{583}(146,\cdot)\) \(1\) \(1\) \(e\left(\frac{99}{130}\right)\) \(e\left(\frac{97}{130}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{51}{130}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{37}{130}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{583}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{130}\right)\) \(e\left(\frac{59}{130}\right)\) \(e\left(\frac{18}{65}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{583}(168,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{130}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{121}{130}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{49}{65}\right)\) \(e\left(\frac{47}{130}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{583}(170,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{21}{130}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{3}{130}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{583}(196,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{79}{130}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{51}{65}\right)\) \(e\left(\frac{18}{65}\right)\) \(e\left(\frac{69}{130}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{583}(202,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{130}\right)\) \(e\left(\frac{103}{130}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{89}{130}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{113}{130}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{583}(218,\cdot)\) \(1\) \(1\) \(e\left(\frac{123}{130}\right)\) \(e\left(\frac{89}{130}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{87}{130}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{109}{130}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{583}(223,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{47}{130}\right)\) \(e\left(\frac{54}{65}\right)\) \(e\left(\frac{81}{130}\right)\) \(e\left(\frac{18}{65}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{97}{130}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{583}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{130}\right)\) \(e\left(\frac{9}{130}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{57}{130}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{49}{130}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{583}(269,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{130}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{53}{130}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{41}{130}\right)\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{583}(290,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{43}{130}\right)\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{99}{130}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{3}{130}\right)\) \(e\left(\frac{43}{65}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{583}(302,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{130}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{93}{130}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{121}{130}\right)\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{583}(322,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{130}\right)\) \(e\left(\frac{7}{130}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{583}(324,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{130}\right)\) \(e\left(\frac{11}{130}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{113}{130}\right)\) \(e\left(\frac{54}{65}\right)\) \(e\left(\frac{42}{65}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{583}(335,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{83}{130}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{101}{130}\right)\) \(e\left(\frac{61}{65}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{583}(355,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{130}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{49}{65}\right)\) \(e\left(\frac{41}{130}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{17}{130}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{25}{26}\right)\)