Properties

Label 5824.js
Modulus $5824$
Conductor $2912$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5824, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,15,8,18])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(135,5824)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5824\)
Conductor: \(2912\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2912.jc
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(15\) \(17\) \(19\) \(23\) \(25\) \(27\)
\(\chi_{5824}(135,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{5824}(151,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{5824}(1383,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{5824}(1815,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{5824}(3047,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{5824}(3063,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{5824}(4295,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{5824}(4727,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{8}\right)\)