Properties

Label 579.413
Modulus $579$
Conductor $579$
Order $16$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(579, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,5]))
 
pari: [g,chi] = znchar(Mod(413,579))
 

Basic properties

Modulus: \(579\)
Conductor: \(579\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 579.o

\(\chi_{579}(50,\cdot)\) \(\chi_{579}(143,\cdot)\) \(\chi_{579}(257,\cdot)\) \(\chi_{579}(359,\cdot)\) \(\chi_{579}(383,\cdot)\) \(\chi_{579}(389,\cdot)\) \(\chi_{579}(413,\cdot)\) \(\chi_{579}(515,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.125988142468786478895863457192486730977.1

Values on generators

\((194,391)\) → \((-1,e\left(\frac{5}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 579 }(413, a) \) \(-1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(i\)\(e\left(\frac{13}{16}\right)\)\(-1\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 579 }(413,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 579 }(413,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 579 }(413,·),\chi_{ 579 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 579 }(413,·)) \;\) at \(\; a,b = \) e.g. 1,2