Properties

Label 5766.169
Modulus $5766$
Conductor $961$
Order $465$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(930)) M = H._module chi = DirichletCharacter(H, M([0,802]))
 
Copy content pari:[g,chi] = znchar(Mod(169,5766))
 

Basic properties

Modulus: \(5766\)
Conductor: \(961\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(465\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{961}(169,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5766.bc

\(\chi_{5766}(7,\cdot)\) \(\chi_{5766}(19,\cdot)\) \(\chi_{5766}(49,\cdot)\) \(\chi_{5766}(103,\cdot)\) \(\chi_{5766}(121,\cdot)\) \(\chi_{5766}(133,\cdot)\) \(\chi_{5766}(169,\cdot)\) \(\chi_{5766}(175,\cdot)\) \(\chi_{5766}(193,\cdot)\) \(\chi_{5766}(205,\cdot)\) \(\chi_{5766}(289,\cdot)\) \(\chi_{5766}(307,\cdot)\) \(\chi_{5766}(319,\cdot)\) \(\chi_{5766}(355,\cdot)\) \(\chi_{5766}(361,\cdot)\) \(\chi_{5766}(379,\cdot)\) \(\chi_{5766}(391,\cdot)\) \(\chi_{5766}(421,\cdot)\) \(\chi_{5766}(475,\cdot)\) \(\chi_{5766}(493,\cdot)\) \(\chi_{5766}(505,\cdot)\) \(\chi_{5766}(541,\cdot)\) \(\chi_{5766}(565,\cdot)\) \(\chi_{5766}(577,\cdot)\) \(\chi_{5766}(607,\cdot)\) \(\chi_{5766}(661,\cdot)\) \(\chi_{5766}(679,\cdot)\) \(\chi_{5766}(691,\cdot)\) \(\chi_{5766}(727,\cdot)\) \(\chi_{5766}(733,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{465})$
Fixed field: Number field defined by a degree 465 polynomial (not computed)

Values on generators

\((3845,3847)\) → \((1,e\left(\frac{401}{465}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(35\)
\( \chi_{ 5766 }(169, a) \) \(1\)\(1\)\(e\left(\frac{41}{93}\right)\)\(e\left(\frac{203}{465}\right)\)\(e\left(\frac{253}{465}\right)\)\(e\left(\frac{376}{465}\right)\)\(e\left(\frac{437}{465}\right)\)\(e\left(\frac{254}{465}\right)\)\(e\left(\frac{4}{155}\right)\)\(e\left(\frac{82}{93}\right)\)\(e\left(\frac{128}{155}\right)\)\(e\left(\frac{136}{155}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5766 }(169,a) \;\) at \(\;a = \) e.g. 2