Properties

Label 5733.2083
Modulus $5733$
Conductor $5733$
Order $21$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5733, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([14,16,14]))
 
Copy content pari:[g,chi] = znchar(Mod(2083,5733))
 

Basic properties

Modulus: \(5733\)
Conductor: \(5733\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(21\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5733.gu

\(\chi_{5733}(445,\cdot)\) \(\chi_{5733}(646,\cdot)\) \(\chi_{5733}(1264,\cdot)\) \(\chi_{5733}(1465,\cdot)\) \(\chi_{5733}(2083,\cdot)\) \(\chi_{5733}(2902,\cdot)\) \(\chi_{5733}(3103,\cdot)\) \(\chi_{5733}(3721,\cdot)\) \(\chi_{5733}(3922,\cdot)\) \(\chi_{5733}(4540,\cdot)\) \(\chi_{5733}(4741,\cdot)\) \(\chi_{5733}(5560,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((2549,1522,5293)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{8}{21}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 5733 }(2083, a) \) \(1\)\(1\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{4}{21}\right)\)\(1\)\(e\left(\frac{6}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5733 }(2083,a) \;\) at \(\;a = \) e.g. 2