Properties

Label 5712.3317
Modulus $5712$
Conductor $5712$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5712, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,2,4,4,7]))
 
Copy content pari:[g,chi] = znchar(Mod(3317,5712))
 

Basic properties

Modulus: \(5712\)
Conductor: \(5712\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5712.eu

\(\chi_{5712}(2813,\cdot)\) \(\chi_{5712}(3317,\cdot)\) \(\chi_{5712}(3653,\cdot)\) \(\chi_{5712}(4157,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: Number field defined by a degree 8 polynomial

Values on generators

\((2143,1429,3809,3265,2689)\) → \((1,i,-1,-1,e\left(\frac{7}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 5712 }(3317, a) \) \(1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(-i\)\(-1\)\(e\left(\frac{1}{8}\right)\)\(i\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5712 }(3317,a) \;\) at \(\;a = \) e.g. 2