sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5712, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,2,4,4,7]))
pari:[g,chi] = znchar(Mod(3317,5712))
Modulus: | \(5712\) | |
Conductor: | \(5712\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(8\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5712}(2813,\cdot)\)
\(\chi_{5712}(3317,\cdot)\)
\(\chi_{5712}(3653,\cdot)\)
\(\chi_{5712}(4157,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,1429,3809,3265,2689)\) → \((1,i,-1,-1,e\left(\frac{7}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 5712 }(3317, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) |
sage:chi.jacobi_sum(n)