sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5712, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,3,0,2,1]))
pari:[g,chi] = znchar(Mod(13,5712))
\(\chi_{5712}(13,\cdot)\)
\(\chi_{5712}(2197,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,1429,3809,3265,2689)\) → \((1,-i,1,-1,i)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 5712 }(13, a) \) |
\(-1\) | \(1\) | \(-1\) | \(-1\) | \(-i\) | \(i\) | \(i\) | \(1\) | \(-1\) | \(-i\) | \(1\) | \(-i\) |
sage:chi.jacobi_sum(n)