sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5616, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,17,0]))
pari:[g,chi] = znchar(Mod(5279,5616))
\(\chi_{5616}(911,\cdot)\)
\(\chi_{5616}(1535,\cdot)\)
\(\chi_{5616}(2783,\cdot)\)
\(\chi_{5616}(3407,\cdot)\)
\(\chi_{5616}(4655,\cdot)\)
\(\chi_{5616}(5279,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,4213,2081,3889)\) → \((-1,1,e\left(\frac{17}{18}\right),1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 5616 }(5279, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)