Properties

Label 5616.4705
Modulus $5616$
Conductor $351$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5616, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,0,16,9]))
 
Copy content pari:[g,chi] = znchar(Mod(4705,5616))
 

Basic properties

Modulus: \(5616\)
Conductor: \(351\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{351}(142,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5616.il

\(\chi_{5616}(337,\cdot)\) \(\chi_{5616}(961,\cdot)\) \(\chi_{5616}(2209,\cdot)\) \(\chi_{5616}(2833,\cdot)\) \(\chi_{5616}(4081,\cdot)\) \(\chi_{5616}(4705,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((703,4213,2081,3889)\) → \((1,1,e\left(\frac{8}{9}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 5616 }(4705, a) \) \(1\)\(1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5616 }(4705,a) \;\) at \(\;a = \) e.g. 2