sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5616, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,3,4,1]))
pari:[g,chi] = znchar(Mod(2251,5616))
\(\chi_{5616}(739,\cdot)\)
\(\chi_{5616}(2251,\cdot)\)
\(\chi_{5616}(2827,\cdot)\)
\(\chi_{5616}(3907,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,4213,2081,3889)\) → \((-1,i,e\left(\frac{1}{3}\right),e\left(\frac{1}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 5616 }(2251, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) |
sage:chi.jacobi_sum(n)