Properties

Label 5616.1601
Modulus $5616$
Conductor $117$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5616, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,0,2,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1601,5616))
 

Basic properties

Modulus: \(5616\)
Conductor: \(117\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{117}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5616.fr

\(\chi_{5616}(449,\cdot)\) \(\chi_{5616}(1601,\cdot)\) \(\chi_{5616}(2177,\cdot)\) \(\chi_{5616}(2897,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.694319656224247224093.2

Values on generators

\((703,4213,2081,3889)\) → \((1,1,e\left(\frac{1}{6}\right),e\left(\frac{1}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 5616 }(1601, a) \) \(1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(-i\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(-1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5616 }(1601,a) \;\) at \(\;a = \) e.g. 2