sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5533, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([6,0]))
pari:[g,chi] = znchar(Mod(504,5533))
\(\chi_{5533}(504,\cdot)\)
\(\chi_{5533}(1510,\cdot)\)
\(\chi_{5533}(3019,\cdot)\)
\(\chi_{5533}(5031,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3522,2520)\) → \((e\left(\frac{3}{5}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 5533 }(504, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)