sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(553, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([52,70]))
pari:[g,chi] = znchar(Mod(494,553))
Modulus: | \(553\) | |
Conductor: | \(553\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(39\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{553}(9,\cdot)\)
\(\chi_{553}(25,\cdot)\)
\(\chi_{553}(72,\cdot)\)
\(\chi_{553}(81,\cdot)\)
\(\chi_{553}(95,\cdot)\)
\(\chi_{553}(123,\cdot)\)
\(\chi_{553}(130,\cdot)\)
\(\chi_{553}(163,\cdot)\)
\(\chi_{553}(177,\cdot)\)
\(\chi_{553}(184,\cdot)\)
\(\chi_{553}(198,\cdot)\)
\(\chi_{553}(200,\cdot)\)
\(\chi_{553}(207,\cdot)\)
\(\chi_{553}(268,\cdot)\)
\(\chi_{553}(310,\cdot)\)
\(\chi_{553}(361,\cdot)\)
\(\chi_{553}(366,\cdot)\)
\(\chi_{553}(431,\cdot)\)
\(\chi_{553}(478,\cdot)\)
\(\chi_{553}(485,\cdot)\)
\(\chi_{553}(487,\cdot)\)
\(\chi_{553}(494,\cdot)\)
\(\chi_{553}(506,\cdot)\)
\(\chi_{553}(550,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((80,477)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{35}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 553 }(494, a) \) |
\(1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{16}{39}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)