sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(546, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,2,1]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(535,546))
         
     
    
  \(\chi_{546}(19,\cdot)\)
  \(\chi_{546}(115,\cdot)\)
  \(\chi_{546}(397,\cdot)\)
  \(\chi_{546}(535,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((365,157,379)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{1}{12}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(5\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |       
    
    
      | \( \chi_{ 546 }(535, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)